Skip to content

A nipype implementation of an anatomical MR and PET defacing pipeline for BIDS datasets

Notifications You must be signed in to change notification settings

openneuropet/petdeface

Repository files navigation

petdeface

A nipype implementation of an anatomical MR and PET defacing pipeline for BIDS datasets. This is a working prototype, in active development denoted by the 0.x.x version number. However, it is functional and can be used to deface PET and MR data as well as co-register the two modalities. Use is encouraged and feedback via Github issues or email to openneuropet@gmail.com is more than welcome. As is often the case, this medical research software is constrained to testing on data that its developers have access to.

This software can be installed via source or via pip from PyPi with pip install petdeface


CI Status
docker build . -t petdeface docker_build
docker push docker push icon

Requirements

Non-Python Dependencies

Python Dependencies

for a full list of dependencies see the pyproject.toml in this repo

Usage

NOTE: This project is currently in beta release, some features listed below may not be available for version numbers < 1.0.0

usage: petdeface.py [-h] [--output_dir OUTPUT_DIR] [--anat_only]
       [--subject SUBJECT] [--session SESSION] [--docker]
       [--singularity] [--n_procs N_PROCS] [--skip_bids_validator] 
       [--version] [--placement PLACEMENT] [--remove_existing] 
       [--excludesubject] input_dir

PetDeface

positional arguments:
  input_dir             The directory with the input dataset

options:
  -h, --help            show this help message and exit
  --output_dir OUTPUT_DIR, -o OUTPUT_DIR
                        The directory where the output files should be stored
  --anat_only, -a       Only deface anatomical images
  --subject SUBJECT, -s SUBJECT
                        The label of the subject to be processed.
  --session SESSION, -ses SESSION
                        The label of the session to be processed.
  --docker, -d          Run in docker container
  --singularity, -si    Run in singularity container
  --n_procs N_PROCS     Number of processors to use when running the workflow
  --skip_bids_validator
  --version, -v         show programs version number and exit
  --placement PLACEMENT, -p PLACEMENT
                        Where to place the defaced images. Options are
                        'adjacent': next to the input_dir (default) in a folder appended with _defaced
                        'inplace': defaces the dataset in place, e.g. replaces faced PET and T1w images
                        w/ defaced at input_dir
                        'derivatives': does all of the defacing within the derivatives folder in input_dir.
  --remove_existing, -r Remove existing output files in output_dir.
  --excludesubject EXCLUDESUBJECT [EXCLUDESUBJECT ...]
                        Exclude a subject(s) from the defacing workflow. e.g. --excludesubject sub-01 sub-02

Working example usage:

petdeface /inputfolder --output_dir /outputfolder --n_procs 16 --skip_bids_validator --placement adjacent

Docker Usage

Requirements:

  • Docker must be installed and access to docker run must be available to the current user
  • openneuropet/petdeface must be present or reachable at dockerhub from the machine the cli is installed at, e.g. docker pull openneuropet/petdeface must work
  • if one is unable to pull the image on can build locally with make dockerbuild

NOTE: The docker image for petdeface is not intended to be used by itself, but instead accessed via the petdeface command line written in Python.

Appending the --docker after including all of the required arguments for petdeface will automatically launch the dockerized version of this application, no additional input after that is required.

Running directly with Docker, no Python, no installation:

If you run without using the CLI you will need to:

  • bind the input and output volumes to the container
  • bind a freesurfer license to the container at /opt/freesurfer/license.txt
  • provide all of the arguments you would normally need to provide to the Python CLI
  • provide $UID and $GID if running on linux so that your output isn't written as root, you may disregard this if you're handy.

An example of the command generated from the Python cli to run the docker based version can be seen below:

docker run --user=$UID:$GID -a stderr -a stdout --rm \
-v /Data/faced_pet_data/:/input \
-v /Data/defaced_pet_data/:/output \
-v /home/freesurfer/license.txt:/opt/freesurfer/license.txt \
--platform linux/amd64 \
petdeface:latest  /input --output_dir /output --n_procs 16 --skip_bids_validator  --placement adjacent --user=$UID:$GID system_platform=Linux

Singularity Usage

Requirements:

  • Singularity must be installed
  • openneuropet/petdeface must be present or reachable at dockerhub

One can execute petdeface in singularity either directly via:

singularity exec -e --bind license.txt:/opt/freesurfer/license.txt docker://openneuropet/petdeface:0.1.1 petdeface

Input and Output directories don't need to be bound, but one does need to bind a freesurfer license to the image before they can proceed with defacing. Otherwise, one can run and execute petdeface with the same syntax as calling it from the command line, the only difference being that petdeface is prepended with singularity exec -e

singularity exec -e --bind license.txt:/opt/freesurfer/license.txt docker://openneuropet/petdeface:0.1.1 petdeface /input --output-dir /output --n_procs 10

NOTE: Testing with singularity has been limited to version singularity-ce 4.2.0, please let us know in the issues section of this repo if you have trouble running this container in singularity/apptainer.

Development

This project uses poetry to package and build, to create a pip installable version of the package run:

git clone https://github.com/openneuropet/petdeface.git
cd petdeface
poetry build
pip install dist/petdeface-<X.X.X>-py3-none-any.whl # where X.X.X is the version number of the generated file

Then install the tar or wheel file created in dist:

pip install petdeface-<X.X.X>-py3-none-any.whl # where X.X.X is the version number of the generated file

Citations

  1. Dale A, Fischl B, Sereno MI. Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. Neuroimage. 1999;9(2):179–94. doi:10.1006/nimg.1998.0395.
  2. Fischl B. FreeSurfer. Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10. PMID: 22248573; PMCID: PMC3685476.
  3. Stefano Cerri, Douglas N. Greve, Andrew Hoopes, Henrik Lundell, Hartwig R. Siebner, Mark Mühlau, Koen Van Leemput, An open-source tool for longitudinal whole-brain and white matter lesion segmentation, NeuroImage: Clinical, Volume 38, 2023, 103354, ISSN 2213-1582, https://doi.org/10.1016/j.nicl.2023.103354. (https://www.sciencedirect.com/science/article/pii/S2213158223000438)
  4. Gorgolewski, Krzysztof J. ; Esteban, Oscar ; Burns, Christopher ; Ziegler, Erik ; Pinsard, Basile ; Madison, Cindee ; Waskom, Michael ; Ellis, David Gage ; Clark, Dav ; Dayan, Michael ; Manhães-Savio, Alexandre ; Notter, Michael Philipp ; Johnson, Hans ; Dewey, Blake E ; Halchenko, Yaroslav O. ; Hamalainen, Carlo ; Keshavan, Anisha ; Clark, Daniel ; Huntenburg, Julia M. ; Hanke, Michael ; Nichols, B. Nolan ; Wassermann , Demian ; Eshaghi, Arman ; Markiewicz, Christopher ; Varoquaux, Gael ; Acland, Benjamin ; Forbes, Jessica ; Rokem, Ariel ; Kong, Xiang-Zhen ; Gramfort, Alexandre ; Kleesiek, Jens ; Schaefer, Alexander ; Sikka, Sharad ; Perez-Guevara, Martin Felipe ; Glatard, Tristan ; Iqbal, Shariq ; Liu, Siqi ; Welch, David ; Sharp, Paul ; Warner, Joshua ; Kastman, Erik ; Lampe, Leonie ; Perkins, L. Nathan ; Craddock, R. Cameron ; Küttner, René ; Bielievtsov, Dmytro ; Geisler, Daniel ; Gerhard, Stephan ; Liem, Franziskus ; Linkersdörfer, Janosch ; Margulies, Daniel S. ; Andberg, Sami Kristian ; Stadler, Jörg ; Steele, Christopher John ; Broderick, William ; Cooper, Gavin ; Floren, Andrew ; Huang, Lijie ; Gonzalez, Ivan ; McNamee, Daniel ; Papadopoulos Orfanos, Dimitri ; Pellman, John ; Triplett, William ; Ghosh, Satrajit (2016). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. 0.12.0-rc1. Zenodo. 10.5281/zenodo.50186