Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add OpenSearch Benchmark index workload for k-NN #364

Merged
merged 23 commits into from
Apr 25, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
399 changes: 399 additions & 0 deletions benchmarks/osb/README.md

Large diffs are not rendered by default.

Empty file added benchmarks/osb/__init__.py
Empty file.
Empty file.
199 changes: 199 additions & 0 deletions benchmarks/osb/extensions/data_set.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
# SPDX-License-Identifier: Apache-2.0
#
# The OpenSearch Contributors require contributions made to
# this file be licensed under the Apache-2.0 license or a
# compatible open source license.

import os
import numpy as np
from abc import ABC, ABCMeta, abstractmethod
from enum import Enum
from typing import cast
import h5py
import struct


class Context(Enum):
"""DataSet context enum. Can be used to add additional context for how a
data-set should be interpreted.
"""
INDEX = 1
QUERY = 2
NEIGHBORS = 3


class DataSet(ABC):
"""DataSet interface. Used for reading data-sets from files.

Methods:
read: Read a chunk of data from the data-set
seek: Get to position in the data-set
size: Gets the number of items in the data-set
reset: Resets internal state of data-set to beginning
"""
__metaclass__ = ABCMeta

BEGINNING = 0

@abstractmethod
def read(self, chunk_size: int):
pass

@abstractmethod
def seek(self, offset: int):
pass

@abstractmethod
def size(self):
pass

@abstractmethod
def reset(self):
pass


class HDF5DataSet(DataSet):
""" Data-set format corresponding to `ANN Benchmarks
<https://github.com/erikbern/ann-benchmarks#data-sets>`_
"""

FORMAT_NAME = "hdf5"

def __init__(self, dataset_path: str, context: Context):
file = h5py.File(dataset_path)
self.data = cast(h5py.Dataset, file[self._parse_context(context)])
self.current = self.BEGINNING

def read(self, chunk_size: int):
if self.current >= self.size():
return None

jmazanec15 marked this conversation as resolved.
Show resolved Hide resolved
end_offset = self.current + chunk_size
if end_offset > self.size():
end_offset = self.size()

v = cast(np.ndarray, self.data[self.current:end_offset])
self.current = end_offset
return v

def seek(self, offset: int):

if offset < self.BEGINNING:
raise Exception("Offset must be greater than or equal to 0")

if offset >= self.size():
raise Exception("Offset must be less than the data set size")

self.current = offset

def size(self):
return self.data.len()

def reset(self):
self.current = self.BEGINNING

@staticmethod
def _parse_context(context: Context) -> str:
if context == Context.NEIGHBORS:
return "neighbors"

if context == Context.INDEX:
return "train"

if context == Context.QUERY:
return "test"

raise Exception("Unsupported context")


class BigANNVectorDataSet(DataSet):
""" Data-set format for vector data-sets for `Big ANN Benchmarks
<https://big-ann-benchmarks.com/index.html#bench-datasets>`_
"""

DATA_SET_HEADER_LENGTH = 8
U8BIN_EXTENSION = "u8bin"
FBIN_EXTENSION = "fbin"
FORMAT_NAME = "bigann"

BYTES_PER_U8INT = 1
BYTES_PER_FLOAT = 4

def __init__(self, dataset_path: str):
self.file = open(dataset_path, 'rb')
self.file.seek(BigANNVectorDataSet.BEGINNING, os.SEEK_END)
num_bytes = self.file.tell()
self.file.seek(BigANNVectorDataSet.BEGINNING)

if num_bytes < BigANNVectorDataSet.DATA_SET_HEADER_LENGTH:
raise Exception("File is invalid")

self.num_points = int.from_bytes(self.file.read(4), "little")
self.dimension = int.from_bytes(self.file.read(4), "little")
self.bytes_per_num = self._get_data_size(dataset_path)

if (num_bytes - BigANNVectorDataSet.DATA_SET_HEADER_LENGTH) != self.num_points * \
self.dimension * self.bytes_per_num:
raise Exception("File is invalid")

self.reader = self._value_reader(dataset_path)
self.current = BigANNVectorDataSet.BEGINNING

def read(self, chunk_size: int):
if self.current >= self.size():
return None

end_offset = self.current + chunk_size
if end_offset > self.size():
end_offset = self.size()

v = np.asarray([self._read_vector() for _ in
range(end_offset - self.current)])
self.current = end_offset
return v

def seek(self, offset: int):

if offset < self.BEGINNING:
raise Exception("Offset must be greater than or equal to 0")

if offset >= self.size():
raise Exception("Offset must be less than the data set size")

bytes_offset = BigANNVectorDataSet.DATA_SET_HEADER_LENGTH + \
self.dimension * self.bytes_per_num * offset
self.file.seek(bytes_offset)
self.current = offset

def _read_vector(self):
return np.asarray([self.reader(self.file) for _ in
range(self.dimension)])

def size(self):
return self.num_points

def reset(self):
self.file.seek(BigANNVectorDataSet.DATA_SET_HEADER_LENGTH)
self.current = BigANNVectorDataSet.BEGINNING

@staticmethod
def _get_data_size(file_name):
ext = file_name.split('.')[-1]
if ext == BigANNVectorDataSet.U8BIN_EXTENSION:
return BigANNVectorDataSet.BYTES_PER_U8INT

if ext == BigANNVectorDataSet.FBIN_EXTENSION:
return BigANNVectorDataSet.BYTES_PER_FLOAT

raise Exception("Unknown extension")

@staticmethod
def _value_reader(file_name):
ext = file_name.split('.')[-1]
if ext == BigANNVectorDataSet.U8BIN_EXTENSION:
return lambda file: float(int.from_bytes(file.read(BigANNVectorDataSet.BYTES_PER_U8INT), "little"))

if ext == BigANNVectorDataSet.FBIN_EXTENSION:
return lambda file: struct.unpack('<f', file.read(BigANNVectorDataSet.BYTES_PER_FLOAT))

raise Exception("Unknown extension")
77 changes: 77 additions & 0 deletions benchmarks/osb/extensions/param_sources.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# SPDX-License-Identifier: Apache-2.0
#
# The OpenSearch Contributors require contributions made to
# this file be licensed under the Apache-2.0 license or a
# compatible open source license.
import copy

from .data_set import Context, HDF5DataSet, DataSet, BigANNVectorDataSet
from .util import bulk_transform, parse_string_parameter, parse_int_parameter, \
ConfigurationError


def register(registry):
registry.register_param_source(
"bulk-from-data-set", BulkVectorsFromDataSetParamSource
)


class BulkVectorsFromDataSetParamSource:
def __init__(self, workload, params, **kwargs):
self.data_set_format = parse_string_parameter("data_set_format", params)
self.data_set_path = parse_string_parameter("data_set_path", params)
self.data_set: DataSet = self._read_data_set()

self.field_name: str = parse_string_parameter("field", params)
self.index_name: str = parse_string_parameter("index", params)
self.bulk_size: int = parse_int_parameter("bulk_size", params)
self.retries: int = parse_int_parameter("retries", params, 10)
self.num_vectors: int = parse_int_parameter(
"num_vectors", params, self.data_set.size()
)
self.total = self.num_vectors
self.current = 0
self.infinite = False
self.percent_completed = 0
self.offset = 0

def _read_data_set(self):
if self.data_set_format == HDF5DataSet.FORMAT_NAME:
return HDF5DataSet(self.data_set_path, Context.INDEX)
if self.data_set_format == BigANNVectorDataSet.FORMAT_NAME:
return BigANNVectorDataSet(self.data_set_path)
raise ConfigurationError("Invalid data set format")

def partition(self, partition_index, total_partitions):
if self.data_set.size() % total_partitions != 0:
raise ValueError("Data set must be divisible by number of clients")

partition_x = copy.copy(self)
partition_x.num_vectors = int(self.num_vectors / total_partitions)
partition_x.offset = int(partition_index * partition_x.num_vectors)

# We need to create a new instance of the data set for each client
partition_x.data_set = partition_x._read_data_set()
partition_x.data_set.seek(partition_x.offset)
partition_x.current = partition_x.offset
return partition_x

def params(self):

if self.current >= self.num_vectors + self.offset:
raise StopIteration

def action(doc_id):
return {'index': {'_index': self.index_name, '_id': doc_id}}

partition = self.data_set.read(self.bulk_size)
body = bulk_transform(partition, self.field_name, action, self.current)
jmazanec15 marked this conversation as resolved.
Show resolved Hide resolved
size = len(body) // 2
self.current += size
self.percent_completed = self.current / self.total

return {
"body": body,
"retries": self.retries,
"size": size
}
13 changes: 13 additions & 0 deletions benchmarks/osb/extensions/registry.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# SPDX-License-Identifier: Apache-2.0
#
# The OpenSearch Contributors require contributions made to
# this file be licensed under the Apache-2.0 license or a
# compatible open source license.

from .param_sources import register as param_sources_register
from .runners import register as runners_register


def register(registry):
param_sources_register(registry)
runners_register(registry)
Loading