-
Notifications
You must be signed in to change notification settings - Fork 70
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added rescorer in hybrid query (#917)
* Initial version for rescorer Signed-off-by: Martin Gaievski <gaievski@amazon.com> (cherry picked from commit 9f4a49a) Signed-off-by: Martin Gaievski <gaievski@amazon.com>
- Loading branch information
1 parent
8a786fe
commit ec73d2b
Showing
8 changed files
with
674 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
150 changes: 150 additions & 0 deletions
150
...ling-upgrade/src/test/java/org/opensearch/neuralsearch/bwc/HybridSearchWithRescoreIT.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
/* | ||
* Copyright OpenSearch Contributors | ||
* SPDX-License-Identifier: Apache-2.0 | ||
*/ | ||
package org.opensearch.neuralsearch.bwc; | ||
|
||
import org.opensearch.index.query.MatchQueryBuilder; | ||
import org.opensearch.index.query.QueryBuilder; | ||
import org.opensearch.index.query.QueryBuilders; | ||
import org.opensearch.knn.index.query.rescore.RescoreContext; | ||
import org.opensearch.neuralsearch.query.HybridQueryBuilder; | ||
import org.opensearch.neuralsearch.query.NeuralQueryBuilder; | ||
|
||
import java.nio.file.Files; | ||
import java.nio.file.Path; | ||
import java.util.Arrays; | ||
import java.util.List; | ||
import java.util.Map; | ||
import java.util.Objects; | ||
|
||
import static org.opensearch.neuralsearch.util.TestUtils.NODES_BWC_CLUSTER; | ||
import static org.opensearch.neuralsearch.util.TestUtils.PARAM_NAME_WEIGHTS; | ||
import static org.opensearch.neuralsearch.util.TestUtils.TEXT_EMBEDDING_PROCESSOR; | ||
import static org.opensearch.neuralsearch.util.TestUtils.DEFAULT_NORMALIZATION_METHOD; | ||
import static org.opensearch.neuralsearch.util.TestUtils.DEFAULT_COMBINATION_METHOD; | ||
import static org.opensearch.neuralsearch.util.TestUtils.getModelId; | ||
|
||
public class HybridSearchWithRescoreIT extends AbstractRollingUpgradeTestCase { | ||
|
||
private static final String PIPELINE_NAME = "nlp-hybrid-with_rescore-pipeline"; | ||
private static final String SEARCH_PIPELINE_NAME = "nlp-search-with_rescore-pipeline"; | ||
private static final String TEST_FIELD = "passage_text"; | ||
private static final String TEXT = "Hello world"; | ||
private static final String TEXT_MIXED = "Hi planet"; | ||
private static final String TEXT_UPGRADED = "Hi earth"; | ||
private static final String QUERY = "Hi world"; | ||
private static final int NUM_DOCS_PER_ROUND = 1; | ||
private static final String VECTOR_EMBEDDING_FIELD = "passage_embedding"; | ||
protected static final String RESCORE_QUERY = "hi"; | ||
private static String modelId = ""; | ||
|
||
/** | ||
* Test normalization with hybrid query and rescore. This test is required as rescore will not be compatible with version lower than 2.15 | ||
*/ | ||
public void testNormalizationProcessorWithRescore_whenIndexWithMultipleShards_E2EFlow() throws Exception { | ||
waitForClusterHealthGreen(NODES_BWC_CLUSTER); | ||
switch (getClusterType()) { | ||
case OLD: | ||
modelId = uploadTextEmbeddingModel(); | ||
loadModel(modelId); | ||
createPipelineProcessor(modelId, PIPELINE_NAME); | ||
createIndexWithConfiguration( | ||
getIndexNameForTest(), | ||
Files.readString(Path.of(classLoader.getResource("processor/IndexMappings.json").toURI())), | ||
PIPELINE_NAME | ||
); | ||
addDocument(getIndexNameForTest(), "0", TEST_FIELD, TEXT, null, null); | ||
createSearchPipeline( | ||
SEARCH_PIPELINE_NAME, | ||
DEFAULT_NORMALIZATION_METHOD, | ||
DEFAULT_COMBINATION_METHOD, | ||
Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.3f, 0.7f })) | ||
); | ||
break; | ||
case MIXED: | ||
modelId = getModelId(getIngestionPipeline(PIPELINE_NAME), TEXT_EMBEDDING_PROCESSOR); | ||
int totalDocsCountMixed; | ||
if (isFirstMixedRound()) { | ||
totalDocsCountMixed = NUM_DOCS_PER_ROUND; | ||
HybridQueryBuilder hybridQueryBuilder = getQueryBuilder(modelId, null, null); | ||
QueryBuilder rescorer = QueryBuilders.matchQuery(TEST_FIELD, RESCORE_QUERY).boost(0.3f); | ||
validateTestIndexOnUpgrade(totalDocsCountMixed, modelId, hybridQueryBuilder, rescorer); | ||
addDocument(getIndexNameForTest(), "1", TEST_FIELD, TEXT_MIXED, null, null); | ||
} else { | ||
totalDocsCountMixed = 2 * NUM_DOCS_PER_ROUND; | ||
HybridQueryBuilder hybridQueryBuilder = getQueryBuilder(modelId, null, null); | ||
validateTestIndexOnUpgrade(totalDocsCountMixed, modelId, hybridQueryBuilder, null); | ||
} | ||
break; | ||
case UPGRADED: | ||
try { | ||
modelId = getModelId(getIngestionPipeline(PIPELINE_NAME), TEXT_EMBEDDING_PROCESSOR); | ||
int totalDocsCountUpgraded = 3 * NUM_DOCS_PER_ROUND; | ||
loadModel(modelId); | ||
addDocument(getIndexNameForTest(), "2", TEST_FIELD, TEXT_UPGRADED, null, null); | ||
HybridQueryBuilder hybridQueryBuilder = getQueryBuilder(modelId, null, null); | ||
QueryBuilder rescorer = QueryBuilders.matchQuery(TEST_FIELD, RESCORE_QUERY).boost(0.3f); | ||
validateTestIndexOnUpgrade(totalDocsCountUpgraded, modelId, hybridQueryBuilder, rescorer); | ||
hybridQueryBuilder = getQueryBuilder(modelId, Map.of("ef_search", 100), RescoreContext.getDefault()); | ||
validateTestIndexOnUpgrade(totalDocsCountUpgraded, modelId, hybridQueryBuilder, rescorer); | ||
} finally { | ||
wipeOfTestResources(getIndexNameForTest(), PIPELINE_NAME, modelId, SEARCH_PIPELINE_NAME); | ||
} | ||
break; | ||
default: | ||
throw new IllegalStateException("Unexpected value: " + getClusterType()); | ||
} | ||
} | ||
|
||
private void validateTestIndexOnUpgrade( | ||
final int numberOfDocs, | ||
final String modelId, | ||
HybridQueryBuilder hybridQueryBuilder, | ||
QueryBuilder rescorer | ||
) throws Exception { | ||
int docCount = getDocCount(getIndexNameForTest()); | ||
assertEquals(numberOfDocs, docCount); | ||
loadModel(modelId); | ||
Map<String, Object> searchResponseAsMap = search( | ||
getIndexNameForTest(), | ||
hybridQueryBuilder, | ||
rescorer, | ||
1, | ||
Map.of("search_pipeline", SEARCH_PIPELINE_NAME) | ||
); | ||
assertNotNull(searchResponseAsMap); | ||
int hits = getHitCount(searchResponseAsMap); | ||
assertEquals(1, hits); | ||
List<Double> scoresList = getNormalizationScoreList(searchResponseAsMap); | ||
for (Double score : scoresList) { | ||
assertTrue(0 <= score && score <= 2); | ||
} | ||
} | ||
|
||
private HybridQueryBuilder getQueryBuilder( | ||
final String modelId, | ||
final Map<String, ?> methodParameters, | ||
final RescoreContext rescoreContextForNeuralQuery | ||
) { | ||
NeuralQueryBuilder neuralQueryBuilder = new NeuralQueryBuilder(); | ||
neuralQueryBuilder.fieldName(VECTOR_EMBEDDING_FIELD); | ||
neuralQueryBuilder.modelId(modelId); | ||
neuralQueryBuilder.queryText(QUERY); | ||
neuralQueryBuilder.k(5); | ||
if (methodParameters != null) { | ||
neuralQueryBuilder.methodParameters(methodParameters); | ||
} | ||
if (Objects.nonNull(rescoreContextForNeuralQuery)) { | ||
neuralQueryBuilder.rescoreContext(rescoreContextForNeuralQuery); | ||
} | ||
|
||
MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("text", QUERY); | ||
|
||
HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); | ||
hybridQueryBuilder.add(matchQueryBuilder); | ||
hybridQueryBuilder.add(neuralQueryBuilder); | ||
|
||
return hybridQueryBuilder; | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.