Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport 2.x] Address inconsistent scoring in hybrid query results #1004

Merged
merged 1 commit into from
Nov 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
### Features
### Enhancements
### Bug Fixes
- Address inconsistent scoring in hybrid query results ([#998](https://github.com/opensearch-project/neural-search/pull/998))
### Infrastructure
### Documentation
### Maintenance
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
*/
package org.opensearch.neuralsearch.query;

import com.google.common.annotations.VisibleForTesting;
import lombok.Getter;
import lombok.extern.log4j.Log4j2;
import org.apache.lucene.search.DisiPriorityQueue;
Expand All @@ -30,7 +31,7 @@
* corresponds to order of sub-queries in an input Hybrid query.
*/
@Log4j2
public final class HybridQueryScorer extends Scorer {
public class HybridQueryScorer extends Scorer {

// score for each of sub-query in this hybrid query
@Getter
Expand Down Expand Up @@ -100,7 +101,8 @@ public float score() throws IOException {
return score(getSubMatches());
}

private float score(DisiWrapper topList) throws IOException {
@VisibleForTesting
float score(DisiWrapper topList) throws IOException {
float totalScore = 0.0f;
for (DisiWrapper disiWrapper = topList; disiWrapper != null; disiWrapper = disiWrapper.next) {
// check if this doc has match in the subQuery. If not, add score as 0.0 and continue
Expand Down Expand Up @@ -187,7 +189,12 @@ public int docID() {
*/
public float[] hybridScores() throws IOException {
float[] scores = new float[numSubqueries];
DisiWrapper topList = subScorersPQ.topList();
// retrieves sub-matches using DisjunctionDisiScorer's two-phase iteration process.
// while the two-phase iterator can efficiently skip blocks of document IDs during matching,
// the DisiWrapper (obtained from subScorersPQ.topList()) ensures sequential document ID iteration.
// this is necessary for maintaining correct scoring order.
DisiWrapper topList = getSubMatches();

for (HybridDisiWrapper disiWrapper = (HybridDisiWrapper) topList; disiWrapper != null; disiWrapper =
(HybridDisiWrapper) disiWrapper.next) {
// check if this doc has match in the subQuery. If not, add score as 0.0 and continue
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -108,12 +108,21 @@ public void collect(int doc) throws IOException {
}
// Increment total hit count which represents unique doc found on the shard
totalHits++;
hitsThresholdChecker.incrementHitCount();
for (int i = 0; i < subScoresByQuery.length; i++) {
float score = subScoresByQuery[i];
// if score is 0.0 there is no hits for that sub-query
if (score == 0) {
continue;
}
if (hitsThresholdChecker.isThresholdReached() && totalHitsRelation == TotalHits.Relation.EQUAL_TO) {
log.info(
"hit count threshold reached: total hits={}, threshold={}, action=updating_results",
totalHits,
hitsThresholdChecker.getTotalHitsThreshold()
);
totalHitsRelation = TotalHits.Relation.GREATER_THAN_OR_EQUAL_TO;
}
collectedHitsPerSubQuery[i]++;
PriorityQueue<ScoreDoc> pq = compoundScores[i];
ScoreDoc currentDoc = new ScoreDoc(doc + docBase, score);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@
import org.opensearch.core.xcontent.ToXContent;
import org.opensearch.core.xcontent.XContentBuilder;
import org.opensearch.core.xcontent.XContentParser;
import org.opensearch.index.mapper.MappedFieldType;
import org.opensearch.index.mapper.TextFieldMapper;
import org.opensearch.index.query.MatchAllQueryBuilder;
import org.opensearch.index.query.QueryBuilder;
Expand Down Expand Up @@ -756,6 +757,69 @@ public void testBoost_whenDefaultBoostSet_thenBuildSuccessfully() {
assertNotNull(hybridQueryBuilder);
}

@SneakyThrows
public void testBuild_whenValidParameters_thenCreateQuery() {
String queryText = "test query";
String modelId = "test_model";
String fieldName = "rank_features";

// Create mock context
QueryShardContext context = mock(QueryShardContext.class);
MappedFieldType fieldType = mock(MappedFieldType.class);
when(context.fieldMapper(fieldName)).thenReturn(fieldType);
when(fieldType.typeName()).thenReturn("rank_features");

// Create HybridQueryBuilder instance (no spy since it's final)
NeuralSparseQueryBuilder neuralSparseQueryBuilder = new NeuralSparseQueryBuilder();
neuralSparseQueryBuilder.fieldName(fieldName)
.queryText(queryText)
.modelId(modelId)
.queryTokensSupplier(() -> Map.of("token1", 1.0f, "token2", 0.5f));
HybridQueryBuilder builder = new HybridQueryBuilder().add(neuralSparseQueryBuilder);

// Build query
Query query = builder.toQuery(context);

// Verify
assertNotNull("Query should not be null", query);
assertTrue("Should be HybridQuery", query instanceof HybridQuery);
}

@SneakyThrows
public void testDoEquals_whenSameParameters_thenEqual() {
// Create neural queries
NeuralQueryBuilder neuralQueryBuilder1 = new NeuralQueryBuilder().queryText("test").modelId("test_model");

NeuralQueryBuilder neuralQueryBuilder2 = new NeuralQueryBuilder().queryText("test").modelId("test_model");

// Create neural sparse queries with queryTokensSupplier
NeuralSparseQueryBuilder neuralSparseQueryBuilder1 = new NeuralSparseQueryBuilder().fieldName("test_field")
.queryText("test")
.modelId("test_model")
.queryTokensSupplier(() -> Map.of("token1", 1.0f));

NeuralSparseQueryBuilder neuralSparseQueryBuilder2 = new NeuralSparseQueryBuilder().fieldName("test_field")
.queryText("test")
.modelId("test_model")
.queryTokensSupplier(() -> Map.of("token1", 1.0f));

// Create builders
HybridQueryBuilder builder1 = new HybridQueryBuilder().add(neuralQueryBuilder1).add(neuralSparseQueryBuilder1);

HybridQueryBuilder builder2 = new HybridQueryBuilder().add(neuralQueryBuilder2).add(neuralSparseQueryBuilder2);

// Verify
assertTrue("Builders should be equal", builder1.equals(builder2));
assertEquals("Hash codes should match", builder1.hashCode(), builder2.hashCode());
}

public void testValidate_whenInvalidParameters_thenThrowException() {
// Test null query builder
HybridQueryBuilder builderWithNull = new HybridQueryBuilder();
IllegalArgumentException nullException = assertThrows(IllegalArgumentException.class, () -> builderWithNull.add(null));
assertEquals("inner hybrid query clause cannot be null", nullException.getMessage());
}

public void testVisit() {
HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder().add(new NeuralQueryBuilder()).add(new NeuralSparseQueryBuilder());
List<QueryBuilder> visitedQueries = new ArrayList<>();
Expand Down
Loading
Loading