Skip to content

Commit

Permalink
Add dataset parser
Browse files Browse the repository at this point in the history
Added Hdf5, Bigann dataset parser.
Added test cases for dataset and parser.

Signed-off-by: Vijayan Balasubramanian <balasvij@amazon.com>
  • Loading branch information
VijayanB committed Dec 21, 2023
1 parent f5752b3 commit f7ae374
Show file tree
Hide file tree
Showing 6 changed files with 599 additions and 0 deletions.
15 changes: 15 additions & 0 deletions osbenchmark/exceptions.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,3 +110,18 @@ class WorkloadConfigError(BenchmarkError):

class NotFound(BenchmarkError):
pass


class InvalidExtensionException(BenchmarkError):
"""
Thrown when invalid or unsupported file extension is passed in config
"""


class ConfigurationError(BenchmarkError):
"""Exception raised for errors configuration.
Attributes:
message -- explanation of the error
"""
pass
242 changes: 242 additions & 0 deletions osbenchmark/utils/dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,242 @@
# SPDX-License-Identifier: Apache-2.0
#
# The OpenSearch Contributors require contributions made to
# this file be licensed under the Apache-2.0 license or a
# compatible open source license.

import os
import struct
from abc import ABC, ABCMeta, abstractmethod
from enum import Enum
from typing import cast

import h5py
import numpy as np

from osbenchmark.exceptions import InvalidExtensionException
from osbenchmark.utils.parse import ConfigurationError


class Context(Enum):
"""DataSet context enum. Can be used to add additional context for how a
data-set should be interpreted.
"""
INDEX = 1
QUERY = 2
NEIGHBORS = 3


class DataSet(ABC):
"""DataSet interface. Used for reading data-sets from files.
Methods:
read: Read a chunk of data from the data-set
seek: Get to position in the data-set
size: Gets the number of items in the data-set
reset: Resets internal state of data-set to beginning
"""
__metaclass__ = ABCMeta

BEGINNING = 0

@abstractmethod
def read(self, chunk_size: int):
"""Read vector for given chunk size
@param chunk_size: limits vector size to read
"""

@abstractmethod
def seek(self, offset: int):
"""
Move reader to given offset
@param offset: value to move reader pointer to
"""

@abstractmethod
def size(self):
"""
Returns size of dataset
"""

@abstractmethod
def reset(self):
"""
Resets the dataset reader
"""


def get_data_set(data_set_format: str, path: str, context: Context):
"""
Factory method to get instance of Dataset for given format.
Args:
data_set_format: File format like hdf5, bigann
path: Data set file path
context: Dataset Context Enum
Returns: DataSet instance
"""
if data_set_format == HDF5DataSet.FORMAT_NAME:
return HDF5DataSet(path, context)
if data_set_format == BigANNVectorDataSet.FORMAT_NAME:
return BigANNVectorDataSet(path)
raise ConfigurationError("Invalid data set format")


class HDF5DataSet(DataSet):
""" Data-set format corresponding to `ANN Benchmarks
<https://github.com/erikbern/ann-benchmarks#data-sets>`_
"""

FORMAT_NAME = "hdf5"

def __init__(self, dataset_path: str, context: Context):
file = h5py.File(dataset_path)
self.data = cast(h5py.Dataset, file[self.parse_context(context)])
self.current = self.BEGINNING

def read(self, chunk_size: int):
if self.current >= self.size():
return None

end_offset = self.current + chunk_size
if end_offset > self.size():
end_offset = self.size()

vectors = cast(np.ndarray, self.data[self.current:end_offset])
self.current = end_offset
return vectors

def seek(self, offset: int):

if offset < self.BEGINNING:
raise Exception("Offset must be greater than or equal to 0")

if offset >= self.size():
raise Exception("Offset must be less than the data set size")

self.current = offset

def size(self):
return self.data.len()

def reset(self):
self.current = self.BEGINNING

@staticmethod
def parse_context(context: Context) -> str:
if context == Context.NEIGHBORS:
return "neighbors"

if context == Context.INDEX:
return "train"

if context == Context.QUERY:
return "test"

raise Exception("Unsupported context")


class BigANNVectorDataSet(DataSet):
""" Data-set format for vector data-sets for `Big ANN Benchmarks
<https://big-ann-benchmarks.com/index.html#bench-datasets>`_
"""

DATA_SET_HEADER_LENGTH = 8
U8BIN_EXTENSION = "u8bin"
FBIN_EXTENSION = "fbin"
FORMAT_NAME = "bigann"
SUPPORTED_EXTENSION = [
FBIN_EXTENSION, U8BIN_EXTENSION
]

BYTES_PER_U8INT = 1
BYTES_PER_FLOAT = 4

def __init__(self, dataset_path: str):
self.file = open(dataset_path, 'rb')
self.file.seek(BigANNVectorDataSet.BEGINNING, os.SEEK_END)
num_bytes = self.file.tell()
self.file.seek(BigANNVectorDataSet.BEGINNING)

if num_bytes < BigANNVectorDataSet.DATA_SET_HEADER_LENGTH:
raise Exception("Invalid file: file size cannot be less than {} bytes".format(
BigANNVectorDataSet.DATA_SET_HEADER_LENGTH))

self.num_points = int.from_bytes(self.file.read(4), "little")
self.dimension = int.from_bytes(self.file.read(4), "little")
self.bytes_per_num = self._get_data_size(dataset_path)

if (num_bytes - BigANNVectorDataSet.DATA_SET_HEADER_LENGTH) != (
self.num_points * self.dimension * self.bytes_per_num):
raise Exception("Invalid file. File size is not matching with expected estimated "
"value based on number of points, dimension and bytes per point")

self.reader = self._value_reader(dataset_path)
self.current = BigANNVectorDataSet.BEGINNING

def read(self, chunk_size: int):
if self.current >= self.size():
return None

end_offset = self.current + chunk_size
if end_offset > self.size():
end_offset = self.size()

vectors = np.asarray(
[self._read_vector() for _ in range(end_offset - self.current)]
)
self.current = end_offset
return vectors

def seek(self, offset: int):

if offset < self.BEGINNING:
raise Exception("Offset must be greater than or equal to 0")

if offset >= self.size():
raise Exception("Offset must be less than the data set size")

bytes_offset = BigANNVectorDataSet.DATA_SET_HEADER_LENGTH + \
self.dimension * self.bytes_per_num * offset
self.file.seek(bytes_offset)
self.current = offset

def _read_vector(self):
return np.asarray([self.reader(self.file) for _ in
range(self.dimension)])

def size(self):
return self.num_points

def reset(self):
self.file.seek(BigANNVectorDataSet.DATA_SET_HEADER_LENGTH)
self.current = BigANNVectorDataSet.BEGINNING

def __del__(self):
self.file.close()

@staticmethod
def _get_extension(file_name):
ext = file_name.split('.')[-1]
if ext not in BigANNVectorDataSet.SUPPORTED_EXTENSION:
raise InvalidExtensionException(
"Unknown extension :{}, supported extensions are: {}".format(
ext, str(BigANNVectorDataSet.SUPPORTED_EXTENSION)))
return ext

@staticmethod
def _get_data_size(file_name):
ext = BigANNVectorDataSet._get_extension(file_name)
if ext == BigANNVectorDataSet.U8BIN_EXTENSION:
return BigANNVectorDataSet.BYTES_PER_U8INT

if ext == BigANNVectorDataSet.FBIN_EXTENSION:
return BigANNVectorDataSet.BYTES_PER_FLOAT

@staticmethod
def _value_reader(file_name):
ext = BigANNVectorDataSet._get_extension(file_name)
if ext == BigANNVectorDataSet.U8BIN_EXTENSION:
return lambda file: float(int.from_bytes(file.read(BigANNVectorDataSet.BYTES_PER_U8INT), "little"))

if ext == BigANNVectorDataSet.FBIN_EXTENSION:
return lambda file: struct.unpack('<f', file.read(BigANNVectorDataSet.BYTES_PER_FLOAT))
48 changes: 48 additions & 0 deletions osbenchmark/utils/parse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# SPDX-License-Identifier: Apache-2.0
#
# The OpenSearch Contributors require contributions made to
# this file be licensed under the Apache-2.0 license or a
# compatible open source license.
from osbenchmark.exceptions import ConfigurationError


def parse_string_parameter(key: str, params: dict, default: str = None) -> str:
if key not in params:
if default is not None:
return default
raise ConfigurationError(
"Value cannot be None for param {}".format(key)
)

if isinstance(params[key], str):
return params[key]

raise ConfigurationError("Value must be a string for param {}".format(key))


def parse_int_parameter(key: str, params: dict, default: int = None) -> int:
if key not in params:
if default:
return default
raise ConfigurationError(
"Value cannot be None for param {}".format(key)
)

if isinstance(params[key], int):
return params[key]

raise ConfigurationError("Value must be a int for param {}".format(key))


def parse_float_parameter(key: str, params: dict, default: float = None) -> float:
if key not in params:
if default:
return default
raise ConfigurationError(
"Value cannot be None for param {}".format(key)
)

if isinstance(params[key], float):
return params[key]

raise ConfigurationError("Value must be a float for param {}".format(key))
Loading

0 comments on commit f7ae374

Please sign in to comment.