Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

πŸš€ Add datumaro annotation dataloader #2377

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).

### Added

- Add `Datumaro` annotation format support by @ashwinvaidya17 in https://github.com/openvinotoolkit/anomalib/pull/2377
- Add `AUPIMO` tutorials notebooks in https://github.com/openvinotoolkit/anomalib/pull/2330 and https://github.com/openvinotoolkit/anomalib/pull/2336
- Add `AUPIMO` metric by [jpcbertoldo](https://github.com/jpcbertoldo) in https://github.com/openvinotoolkit/anomalib/pull/1726 and refactored by [ashwinvaidya17](https://github.com/ashwinvaidya17) in https://github.com/openvinotoolkit/anomalib/pull/2329

Expand Down
15 changes: 15 additions & 0 deletions configs/data/datumaro.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
class_path: anomalib.data.Datumaro
init_args:
root: "datasets/datumaro"
train_batch_size: 32
eval_batch_size: 32
num_workers: 8
image_size: null
transform: null
train_transform: null
eval_transform: null
test_split_mode: FROM_DIR
test_split_ratio: 0.2
val_split_mode: FROM_TEST
val_split_ratio: 0.5
seed: null
3 changes: 2 additions & 1 deletion src/anomalib/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

from .base import AnomalibDataModule, AnomalibDataset
from .depth import DepthDataFormat, Folder3D, MVTec3D
from .image import BTech, Folder, ImageDataFormat, Kolektor, MVTec, Visa
from .image import BTech, Datumaro, Folder, ImageDataFormat, Kolektor, MVTec, Visa
from .predict import PredictDataset
from .utils import LabelName
from .video import Avenue, ShanghaiTech, UCSDped, VideoDataFormat
Expand Down Expand Up @@ -70,6 +70,7 @@ def get_datamodule(config: DictConfig | ListConfig | dict) -> AnomalibDataModule
"VideoDataFormat",
"get_datamodule",
"BTech",
"Datumaro",
"Folder",
"Folder3D",
"PredictDataset",
Expand Down
10 changes: 6 additions & 4 deletions src/anomalib/data/image/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
from enum import Enum

from .btech import BTech
from .datumaro import Datumaro
from .folder import Folder
from .kolektor import Kolektor
from .mvtec import MVTec
Expand All @@ -18,13 +19,14 @@
class ImageDataFormat(str, Enum):
"""Supported Image Dataset Types."""

MVTEC = "mvtec"
MVTEC_3D = "mvtec_3d"
BTECH = "btech"
KOLEKTOR = "kolektor"
DATUMARO = "datumaro"
FOLDER = "folder"
FOLDER_3D = "folder_3d"
KOLEKTOR = "kolektor"
MVTEC = "mvtec"
MVTEC_3D = "mvtec_3d"
VISA = "visa"


__all__ = ["BTech", "Folder", "Kolektor", "MVTec", "Visa"]
__all__ = ["BTech", "Datumaro", "Folder", "Kolektor", "MVTec", "Visa"]
226 changes: 226 additions & 0 deletions src/anomalib/data/image/datumaro.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
"""Dataloader for Datumaro format.

Note: This currently only works for annotations exported from Intel Getiβ„’.
"""

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import json
from pathlib import Path

import pandas as pd
from torchvision.transforms.v2 import Transform

from anomalib import TaskType
from anomalib.data.base import AnomalibDataModule, AnomalibDataset
from anomalib.data.utils import LabelName, Split, TestSplitMode, ValSplitMode


def make_datumaro_dataset(root: str | Path, split: str | Split | None = None) -> pd.DataFrame:
"""Make Datumaro Dataset.

Assumes the following directory structure:

dataset
β”œβ”€β”€ annotations
β”‚ └── default.json
└── images
└── default
β”œβ”€β”€ image1.jpg
β”œβ”€β”€ image2.jpg
└── ...

Args:
root (str | Path): Path to the dataset root directory.
split (str | Split | None): Split of the dataset, usually Split.TRAIN or Split.TEST.
Defaults to ``None``.

Examples:
>>> root = Path("path/to/dataset")
>>> samples = make_datumaro_dataset(root)
>>> samples.head()
image_path label label_index split mask_path
0 path/to/dataset... Normal 0 Split.TRAIN
1 path/to/dataset... Normal 0 Split.TRAIN
2 path/to/dataset... Normal 0 Split.TRAIN
3 path/to/dataset... Normal 0 Split.TRAIN
4 path/to/dataset... Normal 0 Split.TRAIN


Returns:
DataFrame: an output dataframe containing samples for the requested split (ie., train or test).
"""
annotation_file = Path(root) / "annotations" / "default.json"
with annotation_file.open() as f:
annotations = json.load(f)

categories = annotations["categories"]
categories = {idx: label["name"] for idx, label in enumerate(categories["label"]["labels"])}

samples = []
for item in annotations["items"]:
image_path = Path(root) / "images" / "default" / item["image"]["path"]
label_index = item["annotations"][0]["label_id"]
label = categories[label_index]
samples.append({
"image_path": str(image_path),
"label": label,
"label_index": label_index,
"split": None,
"mask_path": "", # mask is provided in the annotation file and is not on disk.
})
samples_df = pd.DataFrame(
samples,
columns=["image_path", "label", "label_index", "split", "mask_path"],
index=range(len(samples)),
)
# Create test/train split
# By default assign all "Normal" samples to train and all "Anomalous" samples to test
samples_df.loc[samples_df["label_index"] == LabelName.NORMAL, "split"] = Split.TRAIN
samples_df.loc[samples_df["label_index"] == LabelName.ABNORMAL, "split"] = Split.TEST

# Get the data frame for the split.
if split:
samples_df = samples_df[samples_df.split == split].reset_index(drop=True)

return samples_df


class DatumaroDataset(AnomalibDataset):
"""Datumaro dataset class.

Args:
task (TaskType): Task type, ``classification``, ``detection`` or ``segmentation``.
root (str | Path): Path to the dataset root directory.
transform (Transform, optional): Transforms that should be applied to the input images.
Defaults to ``None``.
split (str | Split | None): Split of the dataset, usually Split.TRAIN or Split.TEST
Defaults to ``None``.


Examples:
.. code-block:: python

from anomalib.data.image.datumaro import DatumaroDataset
from torchvision.transforms.v2 import Resize

dataset = DatumaroDataset(root=root,
task="classification",
transform=Resize((256, 256)),
)
print(dataset[0].keys())
# Output: dict_keys(['dm_format_version', 'infos', 'categories', 'items'])

"""

def __init__(
self,
task: TaskType,
root: str | Path,
transform: Transform | None = None,
split: str | Split | None = None,
) -> None:
super().__init__(task, transform)
self.split = split
self.samples = make_datumaro_dataset(root, split)


class Datumaro(AnomalibDataModule):
"""Datumaro datamodule.

Args:
root (str | Path): Path to the dataset root directory.
train_batch_size (int): Batch size for training dataloader.
Defaults to ``32``.
eval_batch_size (int): Batch size for evaluation dataloader.
Defaults to ``32``.
num_workers (int): Number of workers for dataloaders.
Defaults to ``8``.
task (TaskType): Task type, ``classification``, ``detection`` or ``segmentation``.
Defaults to ``TaskType.CLASSIFICATION``. Currently only supports classification.
image_size (tuple[int, int], optional): Size to which input images should be resized.
Defaults to ``None``.
transform (Transform, optional): Transforms that should be applied to the input images.
Defaults to ``None``.
train_transform (Transform, optional): Transforms that should be applied to the input images during training.
Defaults to ``None``.
eval_transform (Transform, optional): Transforms that should be applied to the input images during evaluation.
Defaults to ``None``.
test_split_mode (TestSplitMode): Setting that determines how the testing subset is obtained.
Defaults to ``TestSplitMode.FROM_DIR``.
test_split_ratio (float): Fraction of images from the train set that will be reserved for testing.
Defaults to ``0.2``.
val_split_mode (ValSplitMode): Setting that determines how the validation subset is obtained.
Defaults to ``ValSplitMode.SAME_AS_TEST``.
val_split_ratio (float): Fraction of train or test images that will be reserved for validation.
Defaults to ``0.5``.
seed (int | None, optional): Seed which may be set to a fixed value for reproducibility.
Defualts to ``None``.

Examples:
To create a Datumaro datamodule

>>> from pathlib import Path
>>> from torchvision.transforms.v2 import Resize
>>> root = Path("path/to/dataset")
>>> datamodule = Datumaro(root, transform=Resize((256, 256)))
>>> datamodule.setup()
>>> i, data = next(enumerate(datamodule.train_dataloader()))
>>> data.keys()
dict_keys(['image_path', 'label', 'image'])

>>> data["image"].shape
torch.Size([32, 3, 256, 256])
"""

def __init__(
self,
root: str | Path,
train_batch_size: int = 32,
eval_batch_size: int = 32,
num_workers: int = 8,
task: TaskType = TaskType.CLASSIFICATION,
image_size: tuple[int, int] | None = None,
transform: Transform | None = None,
train_transform: Transform | None = None,
eval_transform: Transform | None = None,
test_split_mode: TestSplitMode | str = TestSplitMode.FROM_DIR,
test_split_ratio: float = 0.5,
val_split_mode: ValSplitMode | str = ValSplitMode.FROM_TEST,
val_split_ratio: float = 0.5,
seed: int | None = None,
) -> None:
if task != TaskType.CLASSIFICATION:
msg = "Datumaro dataloader currently only supports classification task."

Check warning on line 195 in src/anomalib/data/image/datumaro.py

View check run for this annotation

Codecov / codecov/patch

src/anomalib/data/image/datumaro.py#L195

Added line #L195 was not covered by tests
raise ValueError(msg)
super().__init__(
train_batch_size=train_batch_size,
eval_batch_size=eval_batch_size,
num_workers=num_workers,
val_split_mode=val_split_mode,
val_split_ratio=val_split_ratio,
test_split_mode=test_split_mode,
test_split_ratio=test_split_ratio,
image_size=image_size,
transform=transform,
train_transform=train_transform,
eval_transform=eval_transform,
seed=seed,
)
self.root = root
self.task = task

def _setup(self, _stage: str | None = None) -> None:
self.train_data = DatumaroDataset(
task=self.task,
root=self.root,
transform=self.train_transform,
split=Split.TRAIN,
)
self.test_data = DatumaroDataset(
task=self.task,
root=self.root,
transform=self.eval_transform,
split=Split.TEST,
)
38 changes: 38 additions & 0 deletions tests/helpers/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

from __future__ import annotations

import json
import shutil
from contextlib import ContextDecorator
from pathlib import Path
Expand Down Expand Up @@ -319,6 +320,43 @@ def __init__(
self.min_size = min_size
self.image_generator = DummyImageGenerator(image_shape=image_shape, rng=self.rng)

def _generate_dummy_datumaro_dataset(self) -> None:
"""Generates dummy Datumaro dataset in a temporary directory."""
# generate images
image_root = self.dataset_root / "images" / "default"
image_root.mkdir(parents=True, exist_ok=True)

file_names: list[str] = []

# Create normal images
for i in range(self.num_train + self.num_test):
label = LabelName.NORMAL
image_filename = image_root / f"normal_{i:03}.png"
file_names.append(image_filename)
self.image_generator.generate_image(label, image_filename)

# Create abnormal images
for i in range(self.num_test):
label = LabelName.ABNORMAL
image_filename = image_root / f"abnormal_{i:03}.png"
file_names.append(image_filename)
self.image_generator.generate_image(label, image_filename)

# create annotation file
annotation_file = self.dataset_root / "annotations" / "default.json"
annotation_file.parent.mkdir(parents=True, exist_ok=True)
annotations = {
"categories": {"label": {"labels": [{"name": "Normal"}, {"name": "Anomalous"}]}},
"items": [],
}
for file_name in file_names:
annotations["items"].append({
"annotations": [{"label_id": 1 if "abnormal" in str(file_name) else 0}],
"image": {"path": file_name.name},
})
with annotation_file.open("w") as f:
json.dump(annotations, f)

def _generate_dummy_mvtec_dataset(
self,
normal_dir: str = "good",
Expand Down
39 changes: 39 additions & 0 deletions tests/unit/data/image/test_datumaro.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
"""Unit tests - Datumaro Datamodule."""

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

from pathlib import Path

import pytest

from anomalib import TaskType
from anomalib.data import Datumaro
from tests.unit.data.base.image import _TestAnomalibImageDatamodule


class TestDatumaro(_TestAnomalibImageDatamodule):
"""Datumaro Datamodule Unit Tests."""

@pytest.fixture()
@staticmethod
def datamodule(dataset_path: Path, task_type: TaskType) -> Datumaro:
"""Create and return a Datumaro datamodule."""
if task_type != TaskType.CLASSIFICATION:
pytest.skip("Datumaro only supports classification tasks.")

_datamodule = Datumaro(
root=dataset_path / "datumaro",
task=task_type,
train_batch_size=4,
eval_batch_size=4,
)
_datamodule.setup()

return _datamodule

@pytest.fixture()
@staticmethod
def fxt_data_config_path() -> str:
"""Return the path to the test data config."""
return "configs/data/datumaro.yaml"
Loading