Skip to content

Commit

Permalink
CVS-81071 Hardcode documentation links to 2022.1 for OV/OVMS/OMZ/MO (#…
Browse files Browse the repository at this point in the history
…1222)

* Replace develop links to main
* Update OMZ links
* Update example catalog-source
* Freeze absolute links to release/2022/1
* Update OpenVINO sphinx doc links to 2022.1
* Update OVMS sphinx doc links from nightly to 2022.1
* Fix 2021.4 links
* update model optimizer/downloader/converter command line CVS-82624
* add info about paddlepaddle support
Co-authored-by: Dariusz Trawinski <dariusz.trawinski@intel.com>
  • Loading branch information
dkalinowski authored Mar 24, 2022
1 parent e497b54 commit 277156f
Show file tree
Hide file tree
Showing 69 changed files with 220 additions and 220 deletions.
50 changes: 25 additions & 25 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,23 +12,23 @@ Google Cloud Storage (GCS), Amazon S3, or Azure Blob Storage.

Read [release notes](https://github.com/openvinotoolkit/model_server/releases) to find out what’s new.

Review the [Architecture concept](https://docs.openvino.ai/nightly/ovms_docs_architecture.html) document for more details.
Review the [Architecture concept](https://docs.openvino.ai/2022.1/ovms_docs_architecture.html) document for more details.

Key features:
- support for multiple frameworks, such as Caffe, TensorFlow, MXNet, and ONNX
- online deployment of new [model versions](https://docs.openvino.ai/nightly/ovms_docs_model_version_policy.html)
- [configuration updates in runtime](https://docs.openvino.ai/nightly/ovms_docs_online_config_changes.html)
- support for multiple frameworks, such as Caffe, TensorFlow, MXNet, PaddlePaddle and ONNX
- online deployment of new [model versions](https://docs.openvino.ai/2022.1/ovms_docs_model_version_policy.html)
- [configuration updates in runtime](https://docs.openvino.ai/2022.1/ovms_docs_online_config_changes.html)
- support for AI accelerators, such as
[Intel Movidius Myriad VPUs](https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_VPU.html),
[GPU](https://docs.openvino.ai/latest/openvino_docs_IE_DG_supported_plugins_GPU.html), and
[HDDL](https://docs.openvinotoolkit.org/latest/_docs_IE_DG_supported_plugins_HDDL.html)
- works with [Bare Metal Hosts](docs/host.md) as well as [Docker containers](https://docs.openvino.ai/nightly/ovms_docs_docker_container.html)
- [model reshaping](https://docs.openvino.ai/nightly/ovms_docs_shape_batch_layout.html) in runtime
- [directed Acyclic Graph Scheduler](https://docs.openvino.ai/nightly/ovms_docs_dag.html) - connecting multiple models to deploy complex processing solutions and reducing data transfer overhead
- [custom nodes in DAG pipelines](https://docs.openvino.ai/nightly/ovms_docs_custom_node_development.html) - allowing model inference and data transformations to be implemented with a custom node C/C++ dynamic library
- [serving stateful models](https://docs.openvino.ai/nightly/ovms_docs_stateful_models.html) - models that operate on sequences of data and maintain their state between inference requests
- [binary format of the input data](https://docs.openvino.ai/nightly/ovms_docs_binary_input.html) - data can be sent in JPEG or PNG formats to reduce traffic and offload the client applications
- [model caching](https://docs.openvino.ai/nightly/ovms_docs_model_cache.html) - cache the models on first load and re-use models from cache on subsequent loads
[Intel Movidius Myriad VPUs](https://docs.openvino.ai/2022.1/openvino_docs_OV_UG_supported_plugins_MYRIAD.html),
[GPU](https://docs.openvino.ai/2022.1/openvino_docs_OV_UG_supported_plugins_GPU.html), and
[HDDL](https://docs.openvino.ai/2022.1/openvino_docs_OV_UG_supported_plugins_HDDL.html)
- works with [Bare Metal Hosts](docs/host.md) as well as [Docker containers](https://docs.openvino.ai/2022.1/ovms_docs_docker_container.html)
- [model reshaping](https://docs.openvino.ai/2022.1/ovms_docs_shape_batch_layout.html) in runtime
- [directed Acyclic Graph Scheduler](https://docs.openvino.ai/2022.1/ovms_docs_dag.html) - connecting multiple models to deploy complex processing solutions and reducing data transfer overhead
- [custom nodes in DAG pipelines](https://docs.openvino.ai/2022.1/ovms_docs_custom_node_development.html) - allowing model inference and data transformations to be implemented with a custom node C/C++ dynamic library
- [serving stateful models](https://docs.openvino.ai/2022.1/ovms_docs_stateful_models.html) - models that operate on sequences of data and maintain their state between inference requests
- [binary format of the input data](https://docs.openvino.ai/2022.1/ovms_docs_binary_input.html) - data can be sent in JPEG or PNG formats to reduce traffic and offload the client applications
- [model caching](https://docs.openvino.ai/2022.1/ovms_docs_model_cache.html) - cache the models on first load and re-use models from cache on subsequent loads


**Note:** OVMS has been tested on RedHat, CentOS, and Ubuntu. The latest publicly released docker images are based on Ubuntu and UBI.
Expand All @@ -39,28 +39,28 @@ They are stored in:

## Run OpenVINO Model Server

A demonstration on how to use OpenVINO Model Server can be found in [our quick-start guide](https://docs.openvino.ai/nightly/ovms_docs_quick_start_guide.html).
A demonstration on how to use OpenVINO Model Server can be found in [our quick-start guide](https://docs.openvino.ai/2022.1/ovms_docs_quick_start_guide.html).
For more information on using Model Server in various scenarios you can check the following guides:

* [Model repository configuration](https://docs.openvino.ai/nightly/ovms_docs_models_repository.html)
* [Model repository configuration](https://docs.openvino.ai/2022.1/ovms_docs_models_repository.html)

* [Using a docker container](https://docs.openvino.ai/nightly/ovms_docs_docker_container.html)
* [Using a docker container](https://docs.openvino.ai/2022.1/ovms_docs_docker_container.html)

* [Landing on bare metal or virtual machine](https://docs.openvino.ai/nightly/ovms_docs_baremetal.html)
* [Landing on bare metal or virtual machine](https://docs.openvino.ai/2022.1/ovms_docs_baremetal.html)

* [Performance tuning](https://docs.openvino.ai/nightly/ovms_docs_performance_tuning.html)
* [Performance tuning](https://docs.openvino.ai/2022.1/ovms_docs_performance_tuning.html)

* [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/nightly/ovms_docs_dag.html)
* [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/2022.1/ovms_docs_dag.html)

* [Custom nodes development](https://docs.openvino.ai/nightly/ovms_docs_custom_node_development.html)
* [Custom nodes development](https://docs.openvino.ai/2022.1/ovms_docs_custom_node_development.html)

* [Serving stateful models](https://docs.openvino.ai/nightly/ovms_docs_stateful_models.html)
* [Serving stateful models](https://docs.openvino.ai/2022.1/ovms_docs_stateful_models.html)

* [Deploy using a Kubernetes Helm Chart](https://docs.openvino.ai/nightly/ovms_deploy_helm_chart.html)
* [Deploy using a Kubernetes Helm Chart](https://docs.openvino.ai/2022.1/ovms_deploy_helm_chart.html)

* [Deployment using Kubernetes Operator](https://operatorhub.io/operator/ovms-operator)

* [Using binary input data](https://docs.openvino.ai/nightly/ovms_docs_binary_input.html)
* [Using binary input data](https://docs.openvino.ai/2022.1/ovms_docs_binary_input.html)



Expand All @@ -74,7 +74,7 @@ For more information on using Model Server in various scenarios you can check th

* [RESTful API](https://restfulapi.net/)

* [Benchmarking results](https://docs.openvinotoolkit.org/latest/openvino_docs_performance_benchmarks_ovms.html)
* [Benchmarking results](https://docs.openvino.ai/2022.1/openvino_docs_performance_benchmarks_ovms.html)

* [Speed and Scale AI Inference Operations Across Multiple Architectures](https://techdecoded.intel.io/essentials/speed-and-scale-ai-inference-operations-across-multiple-architectures/?elq_cid=3646480_ts1607680426276&erpm_id=6470692_ts1607680426276) - webinar recording

Expand Down
8 changes: 4 additions & 4 deletions client/python/ovmsclient/lib/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ OVMS client library contains only the necessary dependencies, so the whole packa

As OpenVINO Model Server API is compatible with TensorFlow Serving, it's possible to use `ovmsclient` with TensorFlow Serving instances on: Predict, GetModelMetadata and GetModelStatus endpoints.

See [API documentation](https://github.com/openvinotoolkit/model_server/blob/develop/client/python/ovmsclient/lib/docs/README.md) for details on what the library provides.
See [API documentation](https://github.com/openvinotoolkit/model_server/blob/releases/2022/1/client/python/ovmsclient/lib/docs/README.md) for details on what the library provides.


## Installation
Expand Down Expand Up @@ -82,7 +82,7 @@ model_status = client.get_model_status(model_name="model")
model_metadata = client.get_model_metadata(model_name="model")

# Exemplary model_metadata. Values for model:
# https://docs.openvino.ai/latest/omz_models_model_resnet_50_tf.html
# https://docs.openvino.ai/2022.1/omz_models_model_resnet_50_tf.html
#
#{
# "model_version": 1,
Expand All @@ -105,7 +105,7 @@ model_metadata = client.get_model_metadata(model_name="model")
**Create and send predict request with binary input data:**
```python
# Assuming requesting model with inputs and outputs as in:
# https://docs.openvino.ai/latest/omz_models_model_resnet_50_tf.html
# https://docs.openvino.ai/2022.1/omz_models_model_resnet_50_tf.html

with open(<path_to_img>, 'rb') as f:
img = f.read()
Expand All @@ -118,4 +118,4 @@ results = client.predict(inputs=inputs, model_name="model")
#
```

For more details on `ovmsclient` see [API reference](https://github.com/openvinotoolkit/model_server/blob/develop/client/python/ovmsclient/lib/docs/README.md)
For more details on `ovmsclient` see [API reference](https://github.com/openvinotoolkit/model_server/blob/releases/2022/1/client/python/ovmsclient/lib/docs/README.md)
4 changes: 2 additions & 2 deletions client/python/ovmsclient/lib/docs/pypi_overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ The `ovmsclient` package works both with OpenVINO&trade; Model Server and Tensor
The `ovmsclient` can replace `tensorflow-serving-api` package with reduced footprint and simplified interface.


See [API reference](https://github.com/openvinotoolkit/model_server/blob/develop/client/python/ovmsclient/lib/docs/README.md) for usage details.
See [API reference](https://github.com/openvinotoolkit/model_server/blob/releases/2022/1/client/python/ovmsclient/lib/docs/README.md) for usage details.


## Usage example
Expand Down Expand Up @@ -38,4 +38,4 @@ results = client.predict(inputs=inputs, model_name="model")

```

Learn more on `ovmsclient` [documentation site](https://github.com/openvinotoolkit/model_server/tree/develop/client/python/ovmsclient/lib).
Learn more on `ovmsclient` [documentation site](https://github.com/openvinotoolkit/model_server/tree/releases/2022/1/client/python/ovmsclient/lib).
2 changes: 1 addition & 1 deletion client/python/ovmsclient/lib/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ def run(self):
description="Python client for OpenVINO Model Server",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/openvinotoolkit/model_server/tree/main/client/python/lib",
url="https://github.com/openvinotoolkit/model_server/tree/releases/2022/1/client/python/ovmsclient/lib",
cmdclass={
"build_apis": BuildApis,
},
Expand Down
6 changes: 3 additions & 3 deletions client/python/ovmsclient/samples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,11 @@ Install samples dependencies:
pip3 install -r requirements.txt
```

Download [Resnet50-tf Model](https://docs.openvinotoolkit.org/latest/omz_models_model_resnet_50_tf.html) and convert it into Intermediate Representation format:
Download [Resnet50-tf Model](https://docs.openvino.ai/2022.1/omz_models_model_resnet_50_tf.html) and convert it into Intermediate Representation format:
```bash
mkdir models
docker run -u $(id -u):$(id -g) -v ${PWD}/models:/models openvino/ubuntu18_dev:latest deployment_tools/open_model_zoo/tools/downloader/downloader.py --name resnet-50-tf --output_dir /models
docker run -u $(id -u):$(id -g) -v ${PWD}/models:/models:rw openvino/ubuntu18_dev:latest deployment_tools/open_model_zoo/tools/downloader/converter.py --name resnet-50-tf --download_dir /models --output_dir /models --precisions FP32
docker run -u $(id -u):$(id -g) -v ${PWD}/models:/models openvino/ubuntu18_dev:latest omz_downloader --name resnet-50-tf --output_dir /models
docker run -u $(id -u):$(id -g) -v ${PWD}/models:/models:rw openvino/ubuntu18_dev:latest omz_converter --name resnet-50-tf --download_dir /models --output_dir /models --precisions FP32
mv ${PWD}/models/public/resnet-50-tf/FP32 ${PWD}/models/public/resnet-50-tf/1
```

Expand Down
12 changes: 6 additions & 6 deletions demos/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,21 +31,21 @@ OpenVINO Model Server demos have been created to showcase the usage of the model
| Demo | Description |
|---|---|
|[Age gender recognition](age_gender_recognition/python/README.md) | Run prediction on a JPEG image using age gender recognition model via gRPC API.|
|[Horizontal Text Detection in Real-Time](horizontal_text_detection/python/README.md) | Run prediction on camera stream using a horizontal text detection model via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [horizontal_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/develop/src/custom_nodes/horizontal_ocr) and [demultiplexer](../docs/demultiplexing.md). |
|[Optical Character Recognition Pipeline](optical_character_recognition/python/README.md) | Run prediction on a JPEG image using a pipeline of text recognition and text detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [east_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/develop/src/custom_nodes/east_ocr) and [demultiplexer](../docs/demultiplexing.md). |
|[Horizontal Text Detection in Real-Time](horizontal_text_detection/python/README.md) | Run prediction on camera stream using a horizontal text detection model via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [horizontal_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2022/1/src/custom_nodes/horizontal_ocr) and [demultiplexer](../docs/demultiplexing.md). |
|[Optical Character Recognition Pipeline](optical_character_recognition/python/README.md) | Run prediction on a JPEG image using a pipeline of text recognition and text detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [east_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2022/1/src/custom_nodes/east_ocr) and [demultiplexer](../docs/demultiplexing.md). |
|[Face Detection](face_detection/python/README.md)|Run prediction on a JPEG image using face detection model via gRPC API.|
|[Single Face Analysis Pipeline](single_face_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a simple pipeline of age-gender recognition and emotion recogition models via gRPC API to analyze image with a single face. This demo uses [pipeline](../docs/dag_scheduler.md) |
|[Multi Faces Analysis Pipeline](multi_faces_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a pipeline of age-gender recognition and emotion recogition models via gRPC API to extract multiple faces from the image and analyze all of them. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/develop/src/custom_nodes/model_zoo_intel_object_detection) and [demultiplexer](../docs/demultiplexing.md) |
|[Multi Faces Analysis Pipeline](multi_faces_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a pipeline of age-gender recognition and emotion recogition models via gRPC API to extract multiple faces from the image and analyze all of them. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2022/1/src/custom_nodes/model_zoo_intel_object_detection) and [demultiplexer](../docs/demultiplexing.md) |
|[Model Ensemble Pipeline](model_ensemble/python/README.md)|Combine multiple image classification models into one [pipeline](../docs/dag_scheduler.md) and aggregate results to improve classification accuracy. |
|[Image Classification](image_classification/python/README.md)|Run prediction on a JPEG image using image classification model via gRPC API.|
|[Using ONNX Model](using_onnx_model/python/README.md)|Run prediction on a JPEG image using image classification ONNX model via gRPC API in two preprocessing variants. This demo uses [pipeline](../docs/dag_scheduler.md) with [image_transformation custom node](https://github.com/openvinotoolkit/model_server/tree/develop/src/custom_nodes/image_transformation). |
|[Using ONNX Model](using_onnx_model/python/README.md)|Run prediction on a JPEG image using image classification ONNX model via gRPC API in two preprocessing variants. This demo uses [pipeline](../docs/dag_scheduler.md) with [image_transformation custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2022/1/src/custom_nodes/image_transformation). |
|[Person, Vehicle, Bike Detection](person_vehicle_bike_detection/python/README.md)|Run prediction on a video file or camera stream using person, vehicle, bike detection model via gRPC API.|
|[Vehicle Analysis Pipeline](vehicle_analysis_pipeline/python/README.md)|Detect vehicles and recognize their attributes using a pipeline of vehicle detection and vehicle attributes recognition models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/develop/src/custom_nodes/model_zoo_intel_object_detection). |
|[Vehicle Analysis Pipeline](vehicle_analysis_pipeline/python/README.md)|Detect vehicles and recognize their attributes using a pipeline of vehicle detection and vehicle attributes recognition models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2022/1/src/custom_nodes/model_zoo_intel_object_detection). |
|[Real Time Stream Analysis](real_time_stream_analysis/python/README.md)| Analyze RTSP video stream in real time with generic application template for custom pre and post processing routines as well as simple results visualizer for displaying predictions in the browser. |
|[Natural Language Processing with BERT](bert_question_answering/python/README.md)|Provide a knowledge source and a query and use BERT model for question answering use case via gRPC API. This demo uses dynamic shape feature. |
|[Speech Recognition on Kaldi Model](speech_recognition_with_kaldi_model/python/README.md)|Run inference on a speech sample and use Kaldi model to perform speech recognition via gRPC API. This demo uses [stateful model](../docs/stateful_models.md). |
|[Benchmark App](benchmark/python/README.md)|Generate traffic and measure performance of the model served in OpenVINO Model Server.|
|[Face Blur Pipeline](face_blur/python/README.md)|Detect faces and blur image using a pipeline of object detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [face_blur custom node](https://github.com/openvinotoolkit/model_server/tree/develop/src/custom_nodes/face_blur). |
|[Face Blur Pipeline](face_blur/python/README.md)|Detect faces and blur image using a pipeline of object detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [face_blur custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2022/1/src/custom_nodes/face_blur). |

## C++
| Demo | Description |
Expand Down
Loading

0 comments on commit 277156f

Please sign in to comment.