Skip to content

Commit

Permalink
Selectively update links (#2303)
Browse files Browse the repository at this point in the history
* 2023.2->2023.3

* 2023.1->2023.3

* /main/ -> /releases/2023/3/

* /nightly/ -> /2023.3/

* Fix 404s
  • Loading branch information
dkalinowski authored Jan 24, 2024
1 parent 8ca30f0 commit 887f3c2
Show file tree
Hide file tree
Showing 75 changed files with 218 additions and 218 deletions.
38 changes: 19 additions & 19 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,21 +15,21 @@ OpenVINO™ Model Server (OVMS) is a high-performance system for serving mod

![OVMS picture](docs/ovms_high_level.png)

The models used by the server need to be stored locally or hosted remotely by object storage services. For more details, refer to [Preparing Model Repository](https://docs.openvino.ai/nightly/ovms_docs_models_repository.html) documentation. Model server works inside [Docker containers](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-in-docker-container), on [Bare Metal](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-on-baremetal-without-container), and in [Kubernetes environment](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-in-kubernetes).
Start using OpenVINO Model Server with a fast-forward serving example from the [Quickstart guide](https://docs.openvino.ai/nightly/ovms_docs_quick_start_guide.html) or explore [Model Server features](https://docs.openvino.ai/nightly/ovms_docs_features.html).
The models used by the server need to be stored locally or hosted remotely by object storage services. For more details, refer to [Preparing Model Repository](https://docs.openvino.ai/2023.3/ovms_docs_models_repository.html) documentation. Model server works inside [Docker containers](https://docs.openvino.ai/2023.3/ovms_docs_deploying_server.html#deploying-model-server-in-docker-container), on [Bare Metal](https://docs.openvino.ai/2023.3/ovms_docs_deploying_server.html#deploying-model-server-on-baremetal-without-container), and in [Kubernetes environment](https://docs.openvino.ai/2023.3/ovms_docs_deploying_server.html#deploying-model-server-in-kubernetes).
Start using OpenVINO Model Server with a fast-forward serving example from the [Quickstart guide](https://docs.openvino.ai/2023.3/ovms_docs_quick_start_guide.html) or explore [Model Server features](https://docs.openvino.ai/2023.3/ovms_docs_features.html).

Read [release notes](https://github.com/openvinotoolkit/model_server/releases) to find out what’s new.

### Key features:
- **[NEW]** [Python code execution](https://docs.openvino.ai/nightly/ovms_docs_python_support_reference.html)
- **[NEW]** [gRPC streaming](https://docs.openvino.ai/nightly/ovms_docs_streaming_endpoints.html)
- [MediaPipe graphs serving](https://docs.openvino.ai/nightly/ovms_docs_mediapipe.html)
- Model management - including [model versioning](https://docs.openvino.ai/nightly/ovms_docs_model_version_policy.html) and [model updates in runtime](https://docs.openvino.ai/nightly/ovms_docs_online_config_changes.html)
- [Dynamic model inputs](https://docs.openvino.ai/nightly/ovms_docs_shape_batch_layout.html)
- [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/nightly/ovms_docs_dag.html) along with [custom nodes in DAG pipelines](https://docs.openvino.ai/nightly/ovms_docs_custom_node_development.html)
- [Metrics](https://docs.openvino.ai/nightly/ovms_docs_metrics.html) - metrics compatible with Prometheus standard
- **[NEW]** [Python code execution](https://docs.openvino.ai/2023.3/ovms_docs_python_support_reference.html)
- **[NEW]** [gRPC streaming](https://docs.openvino.ai/2023.3/ovms_docs_streaming_endpoints.html)
- [MediaPipe graphs serving](https://docs.openvino.ai/2023.3/ovms_docs_mediapipe.html)
- Model management - including [model versioning](https://docs.openvino.ai/2023.3/ovms_docs_model_version_policy.html) and [model updates in runtime](https://docs.openvino.ai/2023.3/ovms_docs_online_config_changes.html)
- [Dynamic model inputs](https://docs.openvino.ai/2023.3/ovms_docs_shape_batch_layout.html)
- [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/2023.3/ovms_docs_dag.html) along with [custom nodes in DAG pipelines](https://docs.openvino.ai/2023.3/ovms_docs_custom_node_development.html)
- [Metrics](https://docs.openvino.ai/2023.3/ovms_docs_metrics.html) - metrics compatible with Prometheus standard
- Support for multiple frameworks, such as TensorFlow, PaddlePaddle and ONNX
- Support for [AI accelerators](https://docs.openvino.ai/nightly/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html)
- Support for [AI accelerators](https://docs.openvino.ai/2023.3/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html)

**Note:** OVMS has been tested on RedHat, and Ubuntu. The latest publicly released docker images are based on Ubuntu and UBI.
They are stored in:
Expand All @@ -39,26 +39,26 @@ They are stored in:

## Run OpenVINO Model Server

A demonstration on how to use OpenVINO Model Server can be found in [our quick-start guide](https://docs.openvino.ai/nightly/ovms_docs_quick_start_guide.html).
A demonstration on how to use OpenVINO Model Server can be found in [our quick-start guide](https://docs.openvino.ai/2023.3/ovms_docs_quick_start_guide.html).
For more information on using Model Server in various scenarios you can check the following guides:

* [Model repository configuration](https://docs.openvino.ai/nightly/ovms_docs_models_repository.html)
* [Model repository configuration](https://docs.openvino.ai/2023.3/ovms_docs_models_repository.html)

* [Deployment options](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html)
* [Deployment options](https://docs.openvino.ai/2023.3/ovms_docs_deploying_server.html)

* [Performance tuning](https://docs.openvino.ai/nightly/ovms_docs_performance_tuning.html)
* [Performance tuning](https://docs.openvino.ai/2023.3/ovms_docs_performance_tuning.html)

* [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/nightly/ovms_docs_dag.html)
* [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/2023.3/ovms_docs_dag.html)

* [Custom nodes development](https://docs.openvino.ai/nightly/ovms_docs_custom_node_development.html)
* [Custom nodes development](https://docs.openvino.ai/2023.3/ovms_docs_custom_node_development.html)

* [Serving stateful models](https://docs.openvino.ai/nightly/ovms_docs_stateful_models.html)
* [Serving stateful models](https://docs.openvino.ai/2023.3/ovms_docs_stateful_models.html)

* [Deploy using a Kubernetes Helm Chart](https://github.com/openvinotoolkit/operator/tree/main/helm-charts/ovms)

* [Deployment using Kubernetes Operator](https://operatorhub.io/operator/ovms-operator)

* [Using binary input data](https://docs.openvino.ai/nightly/ovms_docs_binary_input.html)
* [Using binary input data](https://docs.openvino.ai/2023.3/ovms_docs_binary_input.html)



Expand All @@ -72,7 +72,7 @@ For more information on using Model Server in various scenarios you can check th

* [RESTful API](https://restfulapi.net/)

* [Benchmarking results](https://docs.openvino.ai/nightly/openvino_docs_performance_benchmarks.html)
* [Benchmarking results](https://docs.openvino.ai/2023.3/openvino_docs_performance_benchmarks.html)

* [Speed and Scale AI Inference Operations Across Multiple Architectures](https://techdecoded.intel.io/essentials/speed-and-scale-ai-inference-operations-across-multiple-architectures/?elq_cid=3646480_ts1607680426276&erpm_id=6470692_ts1607680426276) - webinar recording

Expand Down
2 changes: 1 addition & 1 deletion client/go/kserve-api/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.28
RUN go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.2

# Compile API
RUN wget https://raw.githubusercontent.com/openvinotoolkit/model_server/main/src/kfserving_api/grpc_predict_v2.proto
RUN wget https://raw.githubusercontent.com/openvinotoolkit/model_server/releases/2023/3/src/kfserving_api/grpc_predict_v2.proto
RUN echo 'option go_package = "./grpc-client";' >> grpc_predict_v2.proto
RUN protoc --go_out="./" --go-grpc_out="./" ./grpc_predict_v2.proto

Expand Down
2 changes: 1 addition & 1 deletion client/java/kserve-api/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@
</goals>
<configuration>
<url>
https://raw.githubusercontent.com/openvinotoolkit/model_server/main/src/kfserving_api/grpc_predict_v2.proto</url>
https://raw.githubusercontent.com/openvinotoolkit/model_server/releases/2023/3/src/kfserving_api/grpc_predict_v2.proto</url>
<outputFileName>grpc_predict_v2.proto</outputFileName>
<outputDirectory>src/main/proto</outputDirectory>
</configuration>
Expand Down
4 changes: 2 additions & 2 deletions client/python/ovmsclient/lib/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ OVMS client library contains only the necessary dependencies, so the whole packa

As OpenVINO Model Server API is compatible with TensorFlow Serving, it's possible to use `ovmsclient` with TensorFlow Serving instances on: Predict, GetModelMetadata and GetModelStatus endpoints.

See [API documentation](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md) for details on what the library provides.
See [API documentation](https://github.com/openvinotoolkit/model_server/blob/releases/2023/3/client/python/ovmsclient/lib/docs/README.md) for details on what the library provides.

```bash
git clone https://github.com/openvinotoolkit/model_server.git
Expand Down Expand Up @@ -136,4 +136,4 @@ results = client.predict(inputs=inputs, model_name="model")
#
```

For more details on `ovmsclient` see [API reference](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md)
For more details on `ovmsclient` see [API reference](https://github.com/openvinotoolkit/model_server/blob/releases/2023/3/client/python/ovmsclient/lib/docs/README.md)
4 changes: 2 additions & 2 deletions client/python/ovmsclient/lib/docs/pypi_overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ The `ovmsclient` package works both with OpenVINO&trade; Model Server and Tensor
The `ovmsclient` can replace `tensorflow-serving-api` package with reduced footprint and simplified interface.


See [API reference](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md) for usage details.
See [API reference](https://github.com/openvinotoolkit/model_server/blob/releases/2023/3/client/python/ovmsclient/lib/docs/README.md) for usage details.


## Usage example
Expand Down Expand Up @@ -38,4 +38,4 @@ results = client.predict(inputs=inputs, model_name="model")

```

Learn more on `ovmsclient` [documentation site](https://github.com/openvinotoolkit/model_server/tree/main/client/python/ovmsclient/lib).
Learn more on `ovmsclient` [documentation site](https://github.com/openvinotoolkit/model_server/tree/releases/2023/3/client/python/ovmsclient/lib).
2 changes: 1 addition & 1 deletion client/python/ovmsclient/samples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ Install samples dependencies:
pip3 install -r requirements.txt
```

Download [Resnet50-tf Model](https://docs.openvino.ai/2023.2/omz_models_model_resnet_50_tf.html) and convert it into Intermediate Representation format:
Download [Resnet50-tf Model](https://docs.openvino.ai/2023.3/omz_models_model_resnet_50_tf.html) and convert it into Intermediate Representation format:
```bash
mkdir models
docker run -u $(id -u):$(id -g) -v ${PWD}/models:/models openvino/ubuntu20_dev:latest omz_downloader --name resnet-50-tf --output_dir /models
Expand Down
12 changes: 6 additions & 6 deletions demos/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,24 +56,24 @@ Check out the list below to see complete step-by-step examples of using OpenVINO
|[CLIP image classification](python_demos/clip_image_classification/README.md) | Classify image according to provided labels using CLIP model embedded in a multi-node MediaPipe graph.|
|[Seq2seq translation](python_demos/seq2seq_translation/README.md) | Translate text using seq2seq model via gRPC API.|
|[Age gender recognition](age_gender_recognition/python/README.md) | Run prediction on a JPEG image using age gender recognition model via gRPC API.|
|[Horizontal Text Detection in Real-Time](horizontal_text_detection/python/README.md) | Run prediction on camera stream using a horizontal text detection model via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [horizontal_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/horizontal_ocr) and [demultiplexer](../docs/demultiplexing.md). |
|[Optical Character Recognition Pipeline](optical_character_recognition/python/README.md) | Run prediction on a JPEG image using a pipeline of text recognition and text detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [east_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/east_ocr) and [demultiplexer](../docs/demultiplexing.md). |
|[Horizontal Text Detection in Real-Time](horizontal_text_detection/python/README.md) | Run prediction on camera stream using a horizontal text detection model via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [horizontal_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2023/3/src/custom_nodes/horizontal_ocr) and [demultiplexer](../docs/demultiplexing.md). |
|[Optical Character Recognition Pipeline](optical_character_recognition/python/README.md) | Run prediction on a JPEG image using a pipeline of text recognition and text detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [east_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2023/3/src/custom_nodes/east_ocr) and [demultiplexer](../docs/demultiplexing.md). |
|[Face Detection](face_detection/python/README.md)|Run prediction on a JPEG image using face detection model via gRPC API.|
|[Single Face Analysis Pipeline](single_face_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a simple pipeline of age-gender recognition and emotion recognition models via gRPC API to analyze image with a single face. This demo uses [pipeline](../docs/dag_scheduler.md) |
|[Multi Faces Analysis Pipeline](multi_faces_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a pipeline of age-gender recognition and emotion recognition models via gRPC API to extract multiple faces from the image and analyze all of them. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/model_zoo_intel_object_detection) and [demultiplexer](../docs/demultiplexing.md) |
|[Multi Faces Analysis Pipeline](multi_faces_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a pipeline of age-gender recognition and emotion recognition models via gRPC API to extract multiple faces from the image and analyze all of them. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2023/3/src/custom_nodes/model_zoo_intel_object_detection) and [demultiplexer](../docs/demultiplexing.md) |
|[Model Ensemble Pipeline](model_ensemble/python/README.md)|Combine multiple image classification models into one [pipeline](../docs/dag_scheduler.md) and aggregate results to improve classification accuracy. |
|[Image Classification](image_classification/python/README.md)|Run prediction on a JPEG image using image classification model via gRPC API.|
|[Using ONNX Model](using_onnx_model/python/README.md)|Run prediction on a JPEG image using image classification ONNX model via gRPC API in two preprocessing variants. This demo uses [pipeline](../docs/dag_scheduler.md) with [image_transformation custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/image_transformation). |
|[Using ONNX Model](using_onnx_model/python/README.md)|Run prediction on a JPEG image using image classification ONNX model via gRPC API in two preprocessing variants. This demo uses [pipeline](../docs/dag_scheduler.md) with [image_transformation custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2023/3/src/custom_nodes/image_transformation). |
|[Using TensorFlow Model](image_classification_using_tf_model/python/README.md)|Run image classification using directly imported TensorFlow model. |
|[Person, Vehicle, Bike Detection](person_vehicle_bike_detection/python/README.md)|Run prediction on a video file or camera stream using person, vehicle, bike detection model via gRPC API.|
|[Vehicle Analysis Pipeline](vehicle_analysis_pipeline/python/README.md)|Detect vehicles and recognize their attributes using a pipeline of vehicle detection and vehicle attributes recognition models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/model_zoo_intel_object_detection). |
|[Vehicle Analysis Pipeline](vehicle_analysis_pipeline/python/README.md)|Detect vehicles and recognize their attributes using a pipeline of vehicle detection and vehicle attributes recognition models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2023/3/src/custom_nodes/model_zoo_intel_object_detection). |
|[Real Time Stream Analysis](real_time_stream_analysis/python/README.md)| Analyze RTSP video stream in real time with generic application template for custom pre and post processing routines as well as simple results visualizer for displaying predictions in the browser. |
|[Segmentation with PaddlePaddle](segmentation_using_paddlepaddle_model/python/README.md)| Perform segmentation on an image with a PaddlePaddle model. |
|[Natural Language Processing with BERT](bert_question_answering/python/README.md)|Provide a knowledge source and a query and use BERT model for question answering use case via gRPC API. This demo uses dynamic shape feature. |
|[GPT-J Causal Language Modeling](gptj_causal_lm/python/README.md)|Write start of the sentence and let GPT-J continue via gRPC API. This demo uses dynamic shape feature. |
|[Using inputs data in string format with universal-sentence-encoder model](universal-sentence-encoder/README.md)| Handling AI model with text as the model input. |
|[Benchmark App](benchmark/python/README.md)|Generate traffic and measure performance of the model served in OpenVINO Model Server.|
|[Face Blur Pipeline](face_blur/python/README.md)|Detect faces and blur image using a pipeline of object detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [face_blur custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/face_blur). |
|[Face Blur Pipeline](face_blur/python/README.md)|Detect faces and blur image using a pipeline of object detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [face_blur custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2023/3/src/custom_nodes/face_blur). |

## With C++ Client
| Demo | Description |
Expand Down
2 changes: 1 addition & 1 deletion demos/age_gender_recognition/python/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ Install python dependencies:
```bash
pip3 install -r requirements.txt
```
Run [age_gender_recognition.py](https://github.com/openvinotoolkit/model_server/blob/main/demos/age_gender_recognition/python/age_gender_recognition.py) script to make an inference:
Run [age_gender_recognition.py](https://github.com/openvinotoolkit/model_server/blob/releases/2023/3/demos/age_gender_recognition/python/age_gender_recognition.py) script to make an inference:
```bash
python3 age_gender_recognition.py --image_input_path age-gender-recognition-retail-0001.jpg --rest_port 8000
```
Expand Down
Loading

0 comments on commit 887f3c2

Please sign in to comment.