Skip to content

Commit

Permalink
[TF FE] Support complex tensors for Reciprocal operations (#23355)
Browse files Browse the repository at this point in the history
### Details:
- *Extended loader Reciprocal by propagating ComplexTypeMark from input
to output and to represent output complex type tensor as a
floating-point type tensor with an auxiliary dimension that concatenates
real and imaginary parts of complex tensor.*
- *Performed reciprocal for complex numbers.*
- *Wrapped the complex result with ComplexTypeMark and returned the
result*

### Tickets:
 - #23234

---------

Co-authored-by: Roman Kazantsev <roman.kazantsev@intel.com>
  • Loading branch information
MonalSD and rkazants authored Mar 19, 2024
1 parent dd4e5f2 commit 9f08e40
Show file tree
Hide file tree
Showing 2 changed files with 76 additions and 1 deletion.
34 changes: 33 additions & 1 deletion src/frontends/tensorflow_common/src/op/reciprocal.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,12 @@
//

#include "common_op_table.hpp"
#include "helper_ops/complex_type_mark.hpp"
#include "openvino/op/add.hpp"
#include "openvino/op/concat.hpp"
#include "openvino/op/divide.hpp"
#include "openvino/op/gather.hpp"
#include "openvino/op/negative.hpp"
#include "openvino/op/power.hpp"
#include "utils.hpp"

Expand All @@ -16,8 +22,34 @@ namespace op {

OutputVector translate_reciprocal_op(const NodeContext& node) {
// computes element-wise 1/x, where x - input
default_op_checks(node, 1, {"Reciprocal"});
default_op_checks(node, 1, {"Reciprocal"}, true);
auto x = node.get_input(0);
auto complex_type_mark_x = as_type_ptr<ComplexTypeMark>(x.get_node_shared_ptr());
if (complex_type_mark_x) {
x = complex_type_mark_x->input_value(0);
auto minus_one = make_shared<v0::Constant>(element::i32, Shape{1}, -1);
auto two = create_same_type_const_scalar<int32_t>(x, 2);
auto gather_index_real = make_shared<v0::Constant>(element::i32, Shape{1}, 0);
auto gather_index_imag = make_shared<v0::Constant>(element::i32, Shape{1}, 1);
auto x_real = make_shared<v8::Gather>(x, gather_index_real, minus_one)->output(0);
auto x_imag = make_shared<v8::Gather>(x, gather_index_imag, minus_one)->output(0);

// compute (a^2+b^2)
auto real_squared_norm = make_shared<v1::Power>(x_real, two);
auto img_squared_norm = make_shared<v1::Power>(x_imag, two);
auto squared_norm = make_shared<v1::Add>(real_squared_norm, img_squared_norm);

// compute 1/(a+bi) = (a-bi)/(a^2+b^2)
auto complex_reciprocal = make_shared<v1::Divide>(
make_shared<v0::Concat>(OutputVector{x_real, make_shared<ov::op::v0::Negative>(x_imag)}, -1),
squared_norm);
auto complex_result =
make_shared<ComplexTypeMark>(complex_reciprocal, complex_type_mark_x->get_complex_part_type());
set_node_name(node.get_name(), complex_reciprocal);
return {complex_result};
}

// For real numbers, computes element-wise 1/x, where x - input
auto minus_one_const = create_same_type_const_scalar<int32_t>(x, -1);
auto reciprocal = make_shared<v1::Power>(x, minus_one_const);
set_node_name(node.get_name(), reciprocal);
Expand Down
43 changes: 43 additions & 0 deletions tests/layer_tests/tensorflow_tests/test_tf_Reciprocal.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,3 +41,46 @@ def test_reciprocal_basic(self, params, ie_device, precision, ir_version, temp_d
self._test(*self.create_reciprocal_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)

class TestComplexReciprocal(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
rng = np.random.default_rng()
assert 'param_real_1:0' in inputs_info
assert 'param_imag_1:0' in inputs_info
param_real_shape_1 = inputs_info['param_real_1:0']
param_imag_shape_1 = inputs_info['param_imag_1:0']
inputs_data = {}
inputs_data['param_real_1:0'] = 4 * rng.random(param_real_shape_1).astype(np.float32) - 2
inputs_data['param_imag_1:0'] = 4 * rng.random(param_imag_shape_1).astype(np.float32) - 2

return inputs_data

def create_complex_reciprocal_net(self, x_shape,x_type):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
param_real1 = tf.compat.v1.placeholder(np.float32, x_shape, 'param_real_1')
param_imag1 = tf.compat.v1.placeholder(np.float32, x_shape, 'param_imag_1')
complex_x = tf.raw_ops.Complex(real=param_real1, imag=param_imag1)
reciprocal = tf.raw_ops.Reciprocal(x=complex_x)
real = tf.raw_ops.Real(input=reciprocal)
img = tf.raw_ops.Imag(input=reciprocal)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def

return tf_net, None

test_data_basic = [
dict(x_shape=[], x_type=np.float32),
dict(x_shape=[2, 3], x_type=np.float32),
dict(x_shape=[4, 1, 3], x_type=np.float32),
]

@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_complex_reciprocal(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_complex_reciprocal_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)

0 comments on commit 9f08e40

Please sign in to comment.