Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GPU] Extend gemm to fuse broadcast and reshape layers #23513

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 26 additions & 3 deletions src/plugins/intel_gpu/include/intel_gpu/op/gemm.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -26,15 +26,30 @@ class Gemm : public ov::op::v0::MatMul {
const std::vector<int64_t>& order_c,
const ov::element::Type output_type = ov::element::undefined);

Gemm(const ov::Output<Node>& A,
const ov::Output<Node>& B,
const std::vector<int32_t>& target_shape_a,
const std::vector<int32_t>& target_shape_b,
const std::vector<int64_t>& output_pattern_a,
const std::vector<int64_t>& output_pattern_b,
const std::vector<int64_t>& order_a,
const std::vector<int64_t>& order_b,
const std::vector<int64_t>& order_c,
const ov::element::Type output_type = ov::element::undefined);

bool visit_attributes(ov::AttributeVisitor &visitor) override;

void validate_and_infer_types() override;

std::shared_ptr<Node> clone_with_new_inputs(const ov::OutputVector& new_args) const override;

std::vector<int64_t> get_input0_order() const { return m_order_a; }
std::vector<int64_t> get_input1_order() const { return m_order_b; }
std::vector<int64_t> get_output_order() const { return m_order_c; }
std::vector<int32_t> get_input0_broadcast_target_shape() const { return m_target_shape_a; }
std::vector<int32_t> get_input1_broadcast_target_shape() const { return m_target_shape_b; }
std::vector<int64_t> get_input0_reshape_pattern() const { return m_output_pattern_a; }
std::vector<int64_t> get_input1_reshape_pattern() const { return m_output_pattern_b; }
std::vector<int64_t> get_input0_transpose_order() const { return m_order_a; }
std::vector<int64_t> get_input1_transpose_order() const { return m_order_b; }
std::vector<int64_t> get_output_transpose_order() const { return m_order_c; }
ov::element::Type get_output_type() const { return m_output_type; }

static std::vector<int64_t> default_order(size_t rank) {
Expand All @@ -44,6 +59,10 @@ class Gemm : public ov::op::v0::MatMul {
}

protected:
std::vector<int32_t> m_target_shape_a;
std::vector<int32_t> m_target_shape_b;
std::vector<int64_t> m_output_pattern_a;
std::vector<int64_t> m_output_pattern_b;
std::vector<int64_t> m_order_a;
std::vector<int64_t> m_order_b;
std::vector<int64_t> m_order_c;
Expand All @@ -52,6 +71,10 @@ class Gemm : public ov::op::v0::MatMul {

std::vector<ov::PartialShape> shape_infer(const Gemm* op,
std::vector<ov::PartialShape> input_shapes,
const std::vector<int32_t>& target_shape_a,
const std::vector<int32_t>& target_shape_b,
const std::vector<int64_t>& output_pattern_a,
const std::vector<int64_t>& output_pattern_b,
const std::vector<int64_t>& order_a,
const std::vector<int64_t>& order_b,
const std::vector<int64_t>& order_c);
Expand Down
109 changes: 71 additions & 38 deletions src/plugins/intel_gpu/include/intel_gpu/primitives/gemm.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,10 @@ struct gemm : public primitive_base<gemm> {
: primitive_base(id, inputs, {output_padding}, {optional_data_type{ data_type }}),
transpose_input0(transpose_input0 ? 1 : 0),
transpose_input1(transpose_input1 ? 1 : 0),
input0_broadcast_target_shape({}),
input1_broadcast_target_shape({}),
input0_reshape_pattern({}),
input1_reshape_pattern({}),
alpha(alpha),
beta(beta),
input_rank(input_rank),
Expand All @@ -70,9 +74,9 @@ struct gemm : public primitive_base<gemm> {
return order;
};

input0_order = get_transposed_order(input_rank, transpose_input0);
input1_order = get_transposed_order(weight_rank, transpose_input1);
output_order = {};
input0_transpose_order = get_transposed_order(input_rank, transpose_input0);
input1_transpose_order = get_transposed_order(weight_rank, transpose_input1);
output_transpose_order = {};
}

/// @brief Constructs gemm layer.
Expand All @@ -86,69 +90,89 @@ struct gemm : public primitive_base<gemm> {
gemm(const primitive_id& id,
const std::vector<input_info>& inputs,
const data_types data_type,
const std::vector<int64_t>& input0_order = {0, 1, 2, 3},
const std::vector<int64_t>& input1_order = {0, 1, 2, 3},
const std::vector<int64_t>& output_order = {},
const std::vector<int32_t>& input0_broadcast_target_shape = {},
const std::vector<int32_t>& input1_broadcast_target_shape = {},
const std::vector<int64_t>& input0_reshape_pattern = {},
const std::vector<int64_t>& input1_reshape_pattern = {},
const std::vector<int64_t>& input0_transpose_order = {0, 1, 2, 3},
const std::vector<int64_t>& input1_transpose_order = {0, 1, 2, 3},
const std::vector<int64_t>& output_transpose_order = {},
const float alpha = 1.0f,
const float beta = 0.0f,
const padding& output_padding = padding())
: primitive_base(id, inputs, {output_padding}, {optional_data_type{ data_type }}),
input0_order(input0_order),
input1_order(input1_order),
output_order(output_order),
input0_broadcast_target_shape(input0_broadcast_target_shape),
input1_broadcast_target_shape(input1_broadcast_target_shape),
input0_reshape_pattern(input0_reshape_pattern),
input1_reshape_pattern(input1_reshape_pattern),
input0_transpose_order(input0_transpose_order),
input1_transpose_order(input1_transpose_order),
output_transpose_order(output_transpose_order),
alpha(alpha),
beta(beta),
input_rank(input0_order.size()),
weight_rank(input1_order.size()) {
input_rank(input0_transpose_order.size()),
weight_rank(input1_transpose_order.size()) {
if (inputs.size() != 2 && inputs.size() != 3) {
throw std::invalid_argument("Invalid inputs count - gemm expects either two or three inputs");
}

transpose_input0 = get_transpose_mode(input0_order);
transpose_input1 = get_transpose_mode(input1_order);
transpose_input0 = get_transpose_mode(input0_transpose_order);
transpose_input1 = get_transpose_mode(input1_transpose_order);
}

gemm(const primitive_id& id,
const std::vector<input_info>& inputs,
const input_info& beam_table,
const data_types data_type,
const std::vector<int64_t>& input0_order,
const std::vector<int64_t>& input1_order,
const std::vector<int64_t>& output_order,
const std::vector<int64_t>& input0_transpose_order,
const std::vector<int64_t>& input1_transpose_order,
const std::vector<int64_t>& output_transpose_order,
bool indirect_a,
bool indirect_b,
const float alpha = 1.0f,
const float beta = 0.0f,
const padding& output_padding = padding())
: primitive_base(id, inputs, {output_padding}, {optional_data_type{ data_type }}),
input0_order(input0_order),
input1_order(input1_order),
output_order(output_order),
input0_broadcast_target_shape({}),
input1_broadcast_target_shape({}),
input0_reshape_pattern({}),
input1_reshape_pattern({}),
input0_transpose_order(input0_transpose_order),
input1_transpose_order(input1_transpose_order),
output_transpose_order(output_transpose_order),
alpha(alpha),
beta(beta),
input_rank(input0_order.size()),
weight_rank(input1_order.size()),
input_rank(input0_transpose_order.size()),
weight_rank(input1_transpose_order.size()),
beam_table(beam_table),
indirect_a(indirect_a),
indirect_b(indirect_b) {
if (inputs.size() != 2 && inputs.size() != 3) {
throw std::invalid_argument("Invalid inputs count - gemm expects either two or three inputs");
}

transpose_input0 = get_transpose_mode(input0_order);
transpose_input1 = get_transpose_mode(input1_order);
transpose_input0 = get_transpose_mode(input0_transpose_order);
transpose_input1 = get_transpose_mode(input1_transpose_order);
}

/// @brief Flag for transposing first input matrix
uint32_t transpose_input0 = 0;
/// @brief Flag for transposing second input matrix
uint32_t transpose_input1 = 0;
/// @brief broadcasted target shape of input 0
std::vector<int32_t> input0_broadcast_target_shape;
/// @brief broadcasted target shape of input 1
std::vector<int32_t> input1_broadcast_target_shape;
/// @brief reshaped output pattern of input 0
std::vector<int64_t> input0_reshape_pattern;
/// @brief reshaped output pattern of input 1
std::vector<int64_t> input1_reshape_pattern;
/// @brief order of input 0
std::vector<int64_t> input0_order;
std::vector<int64_t> input0_transpose_order;
/// @brief order of input 1
std::vector<int64_t> input1_order;
std::vector<int64_t> input1_transpose_order;
/// @brief order of output
std::vector<int64_t> output_order;
std::vector<int64_t> output_transpose_order;
/// @brief Variable containing ALPHA parameter
float alpha = 1.0f;
/// @brief Variable containing BETA parameter
Expand All @@ -169,12 +193,13 @@ struct gemm : public primitive_base<gemm> {
seed = hash_combine(seed, transpose_input1);
seed = hash_combine(seed, indirect_a);
seed = hash_combine(seed, indirect_b);
for (auto order : input0_order)
seed = hash_combine(seed, order);
for (auto order : input1_order)
seed = hash_combine(seed, order);
for (auto order : output_order)
seed = hash_combine(seed, order);
seed = hash_range(seed, input0_broadcast_target_shape.begin(), input0_broadcast_target_shape.end());
seed = hash_range(seed, input1_broadcast_target_shape.begin(), input1_broadcast_target_shape.end());
seed = hash_range(seed, input0_reshape_pattern.begin(), input0_reshape_pattern.end());
seed = hash_range(seed, input1_reshape_pattern.begin(), input1_reshape_pattern.end());
seed = hash_range(seed, input0_transpose_order.begin(), input0_transpose_order.end());
seed = hash_range(seed, input1_transpose_order.begin(), input1_transpose_order.end());
seed = hash_range(seed, output_transpose_order.begin(), output_transpose_order.end());
seed = hash_combine(seed, alpha);
seed = hash_combine(seed, beta);
return seed;
Expand All @@ -200,9 +225,13 @@ struct gemm : public primitive_base<gemm> {
primitive_base<gemm>::save(ob);
ob << transpose_input0;
ob << transpose_input1;
ob << input0_order;
ob << input1_order;
ob << output_order;
ob << input0_broadcast_target_shape;
ob << input1_broadcast_target_shape;
ob << input0_reshape_pattern;
ob << input1_reshape_pattern;
ob << input0_transpose_order;
ob << input1_transpose_order;
ob << output_transpose_order;
ob << alpha;
ob << beta;
ob << input_rank;
Expand All @@ -217,9 +246,13 @@ struct gemm : public primitive_base<gemm> {
primitive_base<gemm>::load(ib);
ib >> transpose_input0;
ib >> transpose_input1;
ib >> input0_order;
ib >> input1_order;
ib >> output_order;
ib >> input0_broadcast_target_shape;
ib >> input1_broadcast_target_shape;
ib >> input0_reshape_pattern;
ib >> input1_reshape_pattern;
ib >> input0_transpose_order;
ib >> input1_transpose_order;
ib >> output_transpose_order;
ib >> alpha;
ib >> beta;
ib >> input_rank;
Expand Down
Loading
Loading