Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Re introduce adaptive scheduling for training #2541

Merged
merged 2 commits into from
Oct 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,15 @@
class AdaptiveTrainSchedulingHook(Hook):
"""Adaptive Training Scheduling Hook.

Depending on the size of iteration per epoch, adaptively update the validation interval.
Depending on the size of iteration per epoch, adaptively update the validation interval and related values.

Args:
base_lr_patience (int): The value of LR drop patience are expected in total epoch.
Patience used when interval is 1, Defaults to 5.
min_lr_patience (int): Minumum value of LR drop patience.
Defaults to 2.
base_es_patience (int): The value of Early-Stopping patience are expected in total epoch.
Patience used when interval is 1, Defaults to 10.
max_interval (int): Maximum value of validation interval.
Defaults to 5.
decay (float): Parameter to control the interval. This value is set by manual manner.
Expand All @@ -39,6 +45,10 @@ class AdaptiveTrainSchedulingHook(Hook):
def __init__(
self,
max_interval=5,
base_lr_patience=5,
min_lr_patience=2,
base_es_patience=10,
min_es_patience=3,
decay=-0.025,
enable_adaptive_interval_hook=False,
enable_eval_before_run=False,
Expand All @@ -47,6 +57,10 @@ def __init__(
super().__init__(**kwargs)

self.max_interval = max_interval
self.base_lr_patience = base_lr_patience
self.min_lr_patience = min_lr_patience
self.base_es_patience = base_es_patience
self.min_es_patience = min_es_patience
self.decay = decay
self.enable_adaptive_interval_hook = enable_adaptive_interval_hook
self.enable_eval_before_run = enable_eval_before_run
Expand Down Expand Up @@ -84,13 +98,23 @@ def before_train_iter(self, runner):
logger.info(f"Update EvalHook interval: {hook.interval} -> {adaptive_interval}")
hook.interval = adaptive_interval
elif isinstance(hook, LrUpdaterHook):
patience = max(
math.ceil((self.base_lr_patience / adaptive_interval)),
self.min_lr_patience,
)
if hasattr(hook, "interval") and hasattr(hook, "patience"):
hook.interval = adaptive_interval
logger.info(f"Update LrUpdaterHook interval: {hook.interval} -> {adaptive_interval}")
hook.patience = patience
logger.info(f"Update LrUpdaterHook patience: {hook.patience} -> {patience}")
elif isinstance(hook, EarlyStoppingHook):
logger.info(f"Update EarlyStoppingHook interval: {hook.interval} -> {adaptive_interval}")
patience = max(
math.ceil((self.base_es_patience / adaptive_interval)),
self.min_es_patience,
)
logger.info(f"Update EarlyStoppingHook patience: {hook.patience} -> {patience}")
hook.start = adaptive_interval
hook.interval = adaptive_interval
hook.patience = patience
elif isinstance(hook, CheckpointHook):
# make sure checkpoint is saved at last
limit = runner.max_epochs if hook.by_epoch else runner.max_iters
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ def test_before_train_iter(self) -> None:
assert hook._original_interval is None
assert eval_hook.interval == 4
assert lr_hook.interval == 4
assert lr_hook.patience == 1
assert lr_hook.patience == 2
assert early_hook.interval == 4
assert early_hook.patience == 1
assert early_hook.patience == 3
assert ckpt_hook.interval == 4