Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix XAI algorithm for Detection #2609

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ All notable changes to this project will be documented in this file.
- Fix mmcls bug not wrapping model in DataParallel on CPUs (<https://github.com/openvinotoolkit/training_extensions/pull/2601>)
- Fix h-label loss normalization issue w/ exclusive label group of singe label (<https://github.com/openvinotoolkit/training_extensions/pull/2604>)
- Fix division by zero in class incremental learning for classification (<https://github.com/openvinotoolkit/training_extensions/pull/2606>)
- Fix saliency maps calculation issue for detection models (<https://github.com/openvinotoolkit/training_extensions/pull/2609>)

## \[v1.4.3\]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -60,12 +60,9 @@ def func(
else:
cls_scores = self._get_cls_scores_from_feature_map(feature_map)

# Don't use softmax for tiles in tiling detection, if the tile doesn't contain objects,
# it would highlight one of the class maps as a background class
if self.use_cls_softmax and self._num_cls_out_channels > 1:
cls_scores = [torch.softmax(t, dim=1) for t in cls_scores]

batch_size, _, height, width = cls_scores[-1].size()
middle_idx = len(cls_scores) // 2
# resize to the middle feature map
batch_size, _, height, width = cls_scores[middle_idx].size()
saliency_maps = torch.empty(batch_size, self._num_cls_out_channels, height, width)
for batch_idx in range(batch_size):
cls_scores_anchorless = []
Expand All @@ -82,6 +79,11 @@ def func(
)
saliency_maps[batch_idx] = torch.cat(cls_scores_anchorless_resized, dim=0).mean(dim=0)

# Don't use softmax for tiles in tiling detection, if the tile doesn't contain objects,
# it would highlight one of the class maps as a background class
if self.use_cls_softmax:
saliency_maps[0] = torch.stack([torch.softmax(t, dim=1) for t in saliency_maps[0]])

if self._norm_saliency_maps:
saliency_maps = saliency_maps.reshape((batch_size, self._num_cls_out_channels, -1))
saliency_maps = self._normalize_map(saliency_maps)
Expand Down
16 changes: 8 additions & 8 deletions tests/unit/algorithms/detection/test_xai_detection_validity.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,19 +24,19 @@

class TestExplainMethods:
ref_saliency_shapes = {
"MobileNetV2-ATSS": (2, 4, 4),
"MobileNetV2-ATSS": (2, 13, 13),
"SSD": (81, 13, 13),
"YOLOX": (80, 13, 13),
"YOLOX": (80, 26, 26),
}

ref_saliency_vals_det = {
"MobileNetV2-ATSS": np.array([67, 216, 255, 57], dtype=np.uint8),
"YOLOX": np.array([80, 28, 42, 53, 49, 68, 72, 75, 69, 57, 65, 6, 157], dtype=np.uint8),
"SSD": np.array([119, 72, 118, 35, 39, 30, 31, 31, 36, 28, 44, 23, 61], dtype=np.uint8),
"MobileNetV2-ATSS": np.array([34, 67, 148, 132, 172, 147, 146, 155, 167, 159], dtype=np.uint8),
"YOLOX": np.array([177, 94, 147, 147, 161, 162, 164, 164, 163, 166], dtype=np.uint8),
"SSD": np.array([255, 178, 212, 90, 93, 79, 79, 80, 87, 83], dtype=np.uint8),
}

ref_saliency_vals_det_wo_postprocess = {
"MobileNetV2-ATSS": -0.10465062,
"MobileNetV2-ATSS": -0.014513552,
"YOLOX": 0.04948914,
"SSD": 0.6629989,
}
Expand Down Expand Up @@ -80,8 +80,8 @@ def test_saliency_map_det(self, template):
assert len(saliency_maps) == 2
assert saliency_maps[0].ndim == 3
assert saliency_maps[0].shape == self.ref_saliency_shapes[template.name]
actual_sal_vals = saliency_maps[0][0][0].astype(np.int8)
ref_sal_vals = self.ref_saliency_vals_det[template.name].astype(np.int8)
actual_sal_vals = saliency_maps[0][0][0][:10].astype(np.int16)
ref_sal_vals = self.ref_saliency_vals_det[template.name].astype(np.uint8)
assert np.all(np.abs(actual_sal_vals - ref_sal_vals) <= 1)

@e2e_pytest_unit
Expand Down