Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix applying model's hparams when loading model from checkpoint #4057

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,8 @@ All notable changes to this project will be documented in this file.
(<https://github.com/openvinotoolkit/training_extensions/pull/4056>)
- Upgrade MAPI in 2.2
(<https://github.com/openvinotoolkit/training_extensions/pull/4052>)
- Fix applying model's hparams when loading model from checkpoint
(<https://github.com/openvinotoolkit/training_extensions/pull/4057>)

## \[v2.1.0\]

Expand Down
40 changes: 35 additions & 5 deletions src/otx/engine/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -367,8 +367,14 @@ def test(
# NOTE, trainer.test takes only lightning based checkpoint.
# So, it can't take the OTX1.x checkpoint.
if checkpoint is not None and not is_ir_ckpt:
kwargs_user_input: dict[str, Any] = {}
if self.task == OTXTaskType.ZERO_SHOT_VISUAL_PROMPTING:
# to update user's custom infer_reference_info_root through cli for zero-shot learning
# TODO (sungchul): revisit for better solution
kwargs_user_input.update(infer_reference_info_root=self.model.infer_reference_info_root)

model_cls = model.__class__
model = model_cls.load_from_checkpoint(checkpoint_path=checkpoint, **model.hparams)
model = model_cls.load_from_checkpoint(checkpoint_path=checkpoint, **kwargs_user_input)

if model.label_info != self.datamodule.label_info:
if (
Expand Down Expand Up @@ -462,8 +468,14 @@ def predict(
datamodule = self._auto_configurator.update_ov_subset_pipeline(datamodule=datamodule, subset="test")

if checkpoint is not None and not is_ir_ckpt:
kwargs_user_input: dict[str, Any] = {}
if self.task == OTXTaskType.ZERO_SHOT_VISUAL_PROMPTING:
# to update user's custom infer_reference_info_root through cli for zero-shot learning
# TODO (sungchul): revisit for better solution
kwargs_user_input.update(infer_reference_info_root=self.model.infer_reference_info_root)

model_cls = model.__class__
model = model_cls.load_from_checkpoint(checkpoint_path=checkpoint, **model.hparams)
model = model_cls.load_from_checkpoint(checkpoint_path=checkpoint, **kwargs_user_input)

if model.label_info != self.datamodule.label_info:
msg = (
Expand Down Expand Up @@ -574,11 +586,17 @@ def export(
)

if not is_ir_ckpt:
kwargs_user_input: dict[str, Any] = {}
if self.task == OTXTaskType.ZERO_SHOT_VISUAL_PROMPTING:
# to update user's custom infer_reference_info_root through cli for zero-shot learning
# TODO (sungchul): revisit for better solution
kwargs_user_input.update(infer_reference_info_root=self.model.infer_reference_info_root)

model_cls = self.model.__class__
self.model = model_cls.load_from_checkpoint(
checkpoint_path=checkpoint,
map_location="cpu",
**self.model.hparams,
**kwargs_user_input,
)
self.model.eval()

Expand Down Expand Up @@ -742,8 +760,14 @@ def explain(
model = self._auto_configurator.get_ov_model(model_name=str(checkpoint), label_info=datamodule.label_info)

if checkpoint is not None and not is_ir_ckpt:
kwargs_user_input: dict[str, Any] = {}
if self.task == OTXTaskType.ZERO_SHOT_VISUAL_PROMPTING:
# to update user's custom infer_reference_info_root through cli for zero-shot learning
# TODO (sungchul): revisit for better solution
kwargs_user_input.update(infer_reference_info_root=self.model.infer_reference_info_root)

model_cls = model.__class__
model = model_cls.load_from_checkpoint(checkpoint_path=checkpoint, **model.hparams)
model = model_cls.load_from_checkpoint(checkpoint_path=checkpoint, **kwargs_user_input)

if model.label_info != self.datamodule.label_info:
msg = (
Expand Down Expand Up @@ -845,11 +869,17 @@ def benchmark(
)

if not is_ir_ckpt:
kwargs_user_input: dict[str, Any] = {}
if self.task == OTXTaskType.ZERO_SHOT_VISUAL_PROMPTING:
# to update user's custom infer_reference_info_root through cli for zero-shot learning
# TODO (sungchul): revisit for better solution
kwargs_user_input.update(infer_reference_info_root=self.model.infer_reference_info_root)

model_cls = self.model.__class__
self.model = model_cls.load_from_checkpoint(
checkpoint_path=checkpoint,
map_location="cpu",
**self.model.hparams,
**kwargs_user_input,
)
elif isinstance(self.model, OVModel):
msg = "To run benchmark on OV model, checkpoint must be specified."
Expand Down
6 changes: 1 addition & 5 deletions tests/unit/engine/test_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,11 +223,7 @@ def test_exporting(self, fxt_engine, mocker) -> None:
checkpoint = "path/to/checkpoint.ckpt"
fxt_engine.checkpoint = checkpoint
fxt_engine.export()
mock_load_from_checkpoint.assert_called_once_with(
checkpoint_path=checkpoint,
map_location="cpu",
**fxt_engine.model.hparams,
)
mock_load_from_checkpoint.assert_called_once_with(checkpoint_path=checkpoint, map_location="cpu")
mock_export.assert_called_once_with(
output_dir=Path(fxt_engine.work_dir),
base_name="exported_model",
Expand Down
Loading