Skip to content
/ SESR Public

SESR: Single Image Super Resolution with Recursive Squeeze and Excitation Networks

Notifications You must be signed in to change notification settings

opteroncx/SESR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SESR

SESR: Single Image Super Resolution with Recursive Squeeze and Excitation Networks (To appear in ICPR 2018) https://arxiv.org/abs/1801.10319

Quality for scale x4


   Trained on div2k, r=4

DataSet/Method       PSNR/SSIM
Set5 32.05/ 0.897
Set14 28.54/ 0.789
BSD100 27.51/ 0.743
Urban100 25.83/ 0.785

Compare with other methods

Requirement

Python 2.7
Pytorch 0.2.0
opencv-python
numpy

Train

python train.py --cuda

Evaluate

python test.py --cuda

Do Super resolution on your own images

python test.py --cuda --mode sr --testdir path_to_your_image

Reference

About

SESR: Single Image Super Resolution with Recursive Squeeze and Excitation Networks

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages