Skip to content

Hidden physics models: Machine learning of nonlinear partial differential equations

License

Notifications You must be signed in to change notification settings

ozanserifoglu/2018_Raissi-Karniadakis_SparseRegression

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

We introduce Hidden Physics Models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian Processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

For more details, please refer to the following: (https://maziarraissi.github.io/HPM/)

Citation

@article{raissi2017hidden,
  title={Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations},
  author={Raissi, Maziar and Karniadakis, George Em},
  journal={arXiv preprint arXiv:1708.00588},
  year={2017}
}

@article{raissi2017hidden,
  title={Hidden physics models: Machine learning of nonlinear partial differential equations},
  author={Raissi, Maziar and Karniadakis, George Em},
  journal={Journal of Computational Physics},
  year={2017},
  publisher={Elsevier}
}

About

Hidden physics models: Machine learning of nonlinear partial differential equations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 59.9%
  • Mathematica 40.0%
  • Java 0.1%