Skip to content

paapu88/OldRekkari

Folders and files

NameName
Last commit message
Last commit date
Apr 10, 2017
Mar 8, 2017
Mar 8, 2017
Mar 17, 2017
Mar 17, 2017
Mar 8, 2017
Mar 17, 2017
Mar 8, 2017
Mar 8, 2017
Mar 8, 2017
Mar 8, 2017
Mar 8, 2017
Mar 10, 2017
Mar 8, 2017
Mar 8, 2017
Mar 17, 2017
Mar 8, 2017
Apr 10, 2017
Apr 10, 2017
Mar 29, 2017
Mar 25, 2017
Mar 17, 2017
Mar 25, 2017
Mar 17, 2017
Mar 8, 2017
Apr 1, 2017

Repository files navigation

# Rekkari
Recognition of a numberplate of a car

1) copy positive samples to positive_samples directory
(use ../../picture2rectangle.py to clip,
clipped images go to dir 'Rectangle'
accepted full images go to dir 'NotScaled'
images with rectangle replaced by ball go to dir 'NegativeSamples'
)

2) copy negative samples to negative_samples directory
you can generate more negatives by google picture search by
python3 ../../../get_google_images.py
(remember to manually remove positive figures here)
You can process files by
python3 ../../../add_balls.py
which writes to 'HumanProcessed' directory

3) find ./negative_images -iname "*.jpg" > negatives.txt
   cp PositivePicturesFromPhone/NotScaled/* positive_images/
   find ./positive_images -iname "*.jpg" > positives.txt
4)
create distorted positive samples:
perl ../opencv-haar-classifier-training/bin/createsamples.pl  positives.txt negatives.txt samples 1000 "opencv_createsamples -maxxangle 0.1 -maxyangle 0.1 -maxzangle 0.3 -maxidev 50 -w 20 -h 5"

check: opencv_createsamples -w 20 -h 5 -vec ./samples/*vec

5)
merge positive *.vec files to one vec file
python2 ~/Dropbox/Apu/mergevec.py -v samples -o positives.vec
#python2 ../opencv-haar-classifier-training/tools/mergevec.py -v samples -o positives.vec
check: opencv_createsamples -w 20 -h 5 -vec positives.vec

4) generate vec file of positive samples
NOT USED
cp positives.txt  info.txt
edit info.txt to contain pixel info
> ./positive_images/sample_IMG_20170307_102910.jpg 1 0 0 80 20
> ...
opencv_createsamples -num 36 -info info.txt -w 80 -h 20 -vec positives.vec

6) train:
check: opencv_createsamples -w 20 -h 5 -vec positives.vec
rm -f classifier/*
mkdir classifier
opencv_traincascade -data classifier -vec positives.vec -bg negatives.txt\
  -numStages 50 -minHitRate 0.999 -maxFalseAlarmRate 0.5 -numPos 1000 \
  -numNeg 429 -w 20 -h 5 -mode ALL -precalcValBufSize 512\
  -precalcIdxBufSize 512

7) in rekkariDetection.py play with parameters
rekkari_cascade.detectMultiScale(img, 1.1, scale)

About

Recognition of a numberplate of a car

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages