@@ -70,134 +70,22 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
70
70
--format=actions \
71
71
-i ES01 ` # For now it is ok if docstrings are missing the extended summary` \
72
72
-i " pandas.Series.dt PR01" ` # Accessors are implemented as classes, but we do not document the Parameters section` \
73
- -i " pandas.Categorical.__array__ SA01" \
74
- -i " pandas.Categorical.codes SA01" \
75
- -i " pandas.Categorical.dtype SA01" \
76
- -i " pandas.Categorical.from_codes SA01" \
77
- -i " pandas.Categorical.ordered SA01" \
78
- -i " pandas.CategoricalDtype.categories SA01" \
79
- -i " pandas.CategoricalDtype.ordered SA01" \
80
- -i " pandas.CategoricalIndex.codes SA01" \
81
- -i " pandas.CategoricalIndex.ordered SA01" \
82
- -i " pandas.DataFrame.__dataframe__ SA01" \
83
- -i " pandas.DataFrame.__iter__ SA01" \
84
- -i " pandas.DataFrame.at_time PR01" \
85
- -i " pandas.DataFrame.columns SA01" \
86
- -i " pandas.DataFrame.droplevel SA01" \
87
- -i " pandas.DataFrame.hist RT03" \
88
- -i " pandas.DataFrame.infer_objects RT03" \
89
- -i " pandas.DataFrame.kurt RT03,SA01" \
90
- -i " pandas.DataFrame.kurtosis RT03,SA01" \
91
73
-i " pandas.DataFrame.max RT03" \
92
74
-i " pandas.DataFrame.mean RT03,SA01" \
93
75
-i " pandas.DataFrame.median RT03,SA01" \
94
76
-i " pandas.DataFrame.min RT03" \
95
77
-i " pandas.DataFrame.plot PR02,SA01" \
96
- -i " pandas.DataFrame.pop SA01" \
97
- -i " pandas.DataFrame.prod RT03" \
98
- -i " pandas.DataFrame.product RT03" \
99
- -i " pandas.DataFrame.reorder_levels SA01" \
100
- -i " pandas.DataFrame.sem PR01,RT03,SA01" \
101
- -i " pandas.DataFrame.skew RT03,SA01" \
102
- -i " pandas.DataFrame.sparse PR01,SA01" \
103
- -i " pandas.DataFrame.sparse.density SA01" \
104
- -i " pandas.DataFrame.sparse.from_spmatrix SA01" \
105
- -i " pandas.DataFrame.sparse.to_coo SA01" \
106
- -i " pandas.DataFrame.sparse.to_dense SA01" \
107
78
-i " pandas.DataFrame.std PR01,RT03,SA01" \
108
79
-i " pandas.DataFrame.sum RT03" \
109
80
-i " pandas.DataFrame.swaplevel SA01" \
110
- -i " pandas.DataFrame.to_feather SA01" \
111
81
-i " pandas.DataFrame.to_markdown SA01" \
112
- -i " pandas.DataFrame.to_parquet RT03" \
113
82
-i " pandas.DataFrame.var PR01,RT03,SA01" \
114
- -i " pandas.DatetimeIndex.ceil SA01" \
115
- -i " pandas.DatetimeIndex.date SA01" \
116
- -i " pandas.DatetimeIndex.day SA01" \
117
- -i " pandas.DatetimeIndex.day_of_year SA01" \
118
- -i " pandas.DatetimeIndex.dayofyear SA01" \
119
- -i " pandas.DatetimeIndex.floor SA01" \
120
- -i " pandas.DatetimeIndex.freqstr SA01" \
121
- -i " pandas.DatetimeIndex.indexer_at_time PR01,RT03" \
122
- -i " pandas.DatetimeIndex.indexer_between_time RT03" \
123
- -i " pandas.DatetimeIndex.inferred_freq SA01" \
124
- -i " pandas.DatetimeIndex.is_leap_year SA01" \
125
- -i " pandas.DatetimeIndex.microsecond SA01" \
126
- -i " pandas.DatetimeIndex.nanosecond SA01" \
127
- -i " pandas.DatetimeIndex.quarter SA01" \
128
- -i " pandas.DatetimeIndex.round SA01" \
129
- -i " pandas.DatetimeIndex.snap PR01,RT03,SA01" \
130
- -i " pandas.DatetimeIndex.std PR01,RT03" \
131
- -i " pandas.DatetimeIndex.time SA01" \
132
- -i " pandas.DatetimeIndex.timetz SA01" \
133
- -i " pandas.DatetimeIndex.to_period RT03" \
134
- -i " pandas.DatetimeIndex.to_pydatetime RT03,SA01" \
135
- -i " pandas.DatetimeIndex.tz SA01" \
136
- -i " pandas.DatetimeIndex.tz_convert RT03" \
137
- -i " pandas.DatetimeTZDtype SA01" \
138
- -i " pandas.DatetimeTZDtype.tz SA01" \
139
- -i " pandas.DatetimeTZDtype.unit SA01" \
140
83
-i " pandas.Grouper PR02" \
141
- -i " pandas.HDFStore.append PR01,SA01" \
142
- -i " pandas.HDFStore.get SA01" \
143
- -i " pandas.HDFStore.groups SA01" \
144
- -i " pandas.HDFStore.info RT03,SA01" \
145
- -i " pandas.HDFStore.keys SA01" \
146
- -i " pandas.HDFStore.put PR01,SA01" \
147
- -i " pandas.HDFStore.select SA01" \
148
- -i " pandas.HDFStore.walk SA01" \
149
84
-i " pandas.Index PR07" \
150
- -i " pandas.Index.T SA01" \
151
- -i " pandas.Index.append PR07,RT03,SA01" \
152
- -i " pandas.Index.astype SA01" \
153
- -i " pandas.Index.copy PR07,SA01" \
154
- -i " pandas.Index.difference PR07,RT03,SA01" \
155
- -i " pandas.Index.drop PR07,SA01" \
156
- -i " pandas.Index.drop_duplicates RT03" \
157
- -i " pandas.Index.droplevel RT03,SA01" \
158
- -i " pandas.Index.dropna RT03,SA01" \
159
- -i " pandas.Index.dtype SA01" \
160
- -i " pandas.Index.duplicated RT03" \
161
- -i " pandas.Index.empty GL08" \
162
- -i " pandas.Index.equals SA01" \
163
- -i " pandas.Index.fillna RT03" \
164
- -i " pandas.Index.get_indexer PR07,SA01" \
165
- -i " pandas.Index.get_indexer_for PR01,SA01" \
166
- -i " pandas.Index.get_indexer_non_unique PR07,SA01" \
167
- -i " pandas.Index.get_loc PR07,RT03,SA01" \
168
- -i " pandas.Index.get_slice_bound PR07" \
169
- -i " pandas.Index.hasnans SA01" \
170
- -i " pandas.Index.identical PR01,SA01" \
171
- -i " pandas.Index.inferred_type SA01" \
172
- -i " pandas.Index.insert PR07,RT03,SA01" \
173
- -i " pandas.Index.intersection PR07,RT03,SA01" \
174
- -i " pandas.Index.item SA01" \
175
85
-i " pandas.Index.join PR07,RT03,SA01" \
176
- -i " pandas.Index.map SA01" \
177
- -i " pandas.Index.memory_usage RT03" \
178
- -i " pandas.Index.name SA01" \
179
86
-i " pandas.Index.names GL08" \
180
- -i " pandas.Index.nbytes SA01" \
181
- -i " pandas.Index.ndim SA01" \
182
- -i " pandas.Index.nunique RT03" \
183
- -i " pandas.Index.putmask PR01,RT03" \
184
87
-i " pandas.Index.ravel PR01,RT03" \
185
- -i " pandas.Index.reindex PR07" \
186
- -i " pandas.Index.shape SA01" \
187
- -i " pandas.Index.size SA01" \
188
- -i " pandas.Index.slice_indexer PR07,RT03,SA01" \
189
- -i " pandas.Index.slice_locs RT03" \
190
88
-i " pandas.Index.str PR01,SA01" \
191
- -i " pandas.Index.symmetric_difference PR07,RT03,SA01" \
192
- -i " pandas.Index.take PR01,PR07" \
193
- -i " pandas.Index.to_list RT03" \
194
- -i " pandas.Index.union PR07,RT03,SA01" \
195
- -i " pandas.Index.unique RT03" \
196
- -i " pandas.Index.view GL08" \
197
- -i " pandas.Int16Dtype SA01" \
198
- -i " pandas.Int32Dtype SA01" \
199
- -i " pandas.Int64Dtype SA01" \
200
- -i " pandas.Int8Dtype SA01" \
201
89
-i " pandas.Interval PR02" \
202
90
-i " pandas.Interval.closed SA01" \
203
91
-i " pandas.Interval.left SA01" \
@@ -207,7 +95,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
207
95
-i " pandas.IntervalDtype.subtype SA01" \
208
96
-i " pandas.IntervalIndex.closed SA01" \
209
97
-i " pandas.IntervalIndex.contains RT03" \
210
- -i " pandas.IntervalIndex.get_indexer PR07,SA01" \
211
98
-i " pandas.IntervalIndex.get_loc PR07,RT03,SA01" \
212
99
-i " pandas.IntervalIndex.is_non_overlapping_monotonic SA01" \
213
100
-i " pandas.IntervalIndex.left GL08" \
@@ -220,9 +107,7 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
220
107
-i " pandas.MultiIndex.append PR07,SA01" \
221
108
-i " pandas.MultiIndex.copy PR07,RT03,SA01" \
222
109
-i " pandas.MultiIndex.drop PR07,RT03,SA01" \
223
- -i " pandas.MultiIndex.droplevel RT03,SA01" \
224
110
-i " pandas.MultiIndex.dtypes SA01" \
225
- -i " pandas.MultiIndex.get_indexer PR07,SA01" \
226
111
-i " pandas.MultiIndex.get_level_values SA01" \
227
112
-i " pandas.MultiIndex.get_loc PR07" \
228
113
-i " pandas.MultiIndex.get_loc_level PR07" \
@@ -261,7 +146,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
261
146
-i " pandas.PeriodIndex.dayofyear SA01" \
262
147
-i " pandas.PeriodIndex.days_in_month SA01" \
263
148
-i " pandas.PeriodIndex.daysinmonth SA01" \
264
- -i " pandas.PeriodIndex.freqstr SA01" \
265
149
-i " pandas.PeriodIndex.from_fields PR07,SA01" \
266
150
-i " pandas.PeriodIndex.from_ordinals SA01" \
267
151
-i " pandas.PeriodIndex.hour SA01" \
@@ -282,70 +166,52 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
282
166
-i " pandas.RangeIndex.step SA01" \
283
167
-i " pandas.RangeIndex.stop SA01" \
284
168
-i " pandas.Series SA01" \
285
- -i " pandas.Series.T SA01" \
286
169
-i " pandas.Series.__iter__ RT03,SA01" \
287
170
-i " pandas.Series.add PR07" \
288
- -i " pandas.Series.at_time PR01" \
289
171
-i " pandas.Series.backfill PR01,SA01" \
290
172
-i " pandas.Series.case_when RT03" \
291
173
-i " pandas.Series.cat PR07,SA01" \
292
174
-i " pandas.Series.cat.add_categories PR01,PR02" \
293
175
-i " pandas.Series.cat.as_ordered PR01" \
294
176
-i " pandas.Series.cat.as_unordered PR01" \
295
177
-i " pandas.Series.cat.codes SA01" \
296
- -i " pandas.Series.cat.ordered SA01" \
297
178
-i " pandas.Series.cat.remove_categories PR01,PR02" \
298
179
-i " pandas.Series.cat.remove_unused_categories PR01" \
299
180
-i " pandas.Series.cat.rename_categories PR01,PR02" \
300
181
-i " pandas.Series.cat.reorder_categories PR01,PR02" \
301
182
-i " pandas.Series.cat.set_categories PR01,PR02" \
302
183
-i " pandas.Series.div PR07" \
303
- -i " pandas.Series.droplevel SA01" \
304
184
-i " pandas.Series.dt.as_unit PR01,PR02" \
305
- -i " pandas.Series.dt.ceil PR01,PR02,SA01 " \
185
+ -i " pandas.Series.dt.ceil PR01,PR02" \
306
186
-i " pandas.Series.dt.components SA01" \
307
- -i " pandas.Series.dt.date SA01" \
308
- -i " pandas.Series.dt.day SA01" \
309
187
-i " pandas.Series.dt.day_name PR01,PR02" \
310
- -i " pandas.Series.dt.day_of_year SA01" \
311
- -i " pandas.Series.dt.dayofyear SA01" \
312
188
-i " pandas.Series.dt.days SA01" \
313
189
-i " pandas.Series.dt.days_in_month SA01" \
314
190
-i " pandas.Series.dt.daysinmonth SA01" \
315
- -i " pandas.Series.dt.floor PR01,PR02,SA01 " \
191
+ -i " pandas.Series.dt.floor PR01,PR02" \
316
192
-i " pandas.Series.dt.freq GL08" \
317
- -i " pandas.Series.dt.is_leap_year SA01" \
318
- -i " pandas.Series.dt.microsecond SA01" \
319
193
-i " pandas.Series.dt.microseconds SA01" \
320
194
-i " pandas.Series.dt.month_name PR01,PR02" \
321
- -i " pandas.Series.dt.nanosecond SA01" \
322
195
-i " pandas.Series.dt.nanoseconds SA01" \
323
196
-i " pandas.Series.dt.normalize PR01" \
324
- -i " pandas.Series.dt.quarter SA01" \
325
197
-i " pandas.Series.dt.qyear GL08" \
326
- -i " pandas.Series.dt.round PR01,PR02,SA01 " \
198
+ -i " pandas.Series.dt.round PR01,PR02" \
327
199
-i " pandas.Series.dt.seconds SA01" \
328
200
-i " pandas.Series.dt.strftime PR01,PR02" \
329
- -i " pandas.Series.dt.time SA01" \
330
- -i " pandas.Series.dt.timetz SA01" \
331
- -i " pandas.Series.dt.to_period PR01,PR02,RT03" \
201
+ -i " pandas.Series.dt.to_period PR01,PR02" \
332
202
-i " pandas.Series.dt.total_seconds PR01" \
333
- -i " pandas.Series.dt.tz SA01" \
334
- -i " pandas.Series.dt.tz_convert PR01,PR02,RT03" \
203
+ -i " pandas.Series.dt.tz_convert PR01,PR02" \
335
204
-i " pandas.Series.dt.tz_localize PR01,PR02" \
336
205
-i " pandas.Series.dt.unit GL08" \
337
206
-i " pandas.Series.dtype SA01" \
338
- -i " pandas.Series.empty GL08" \
339
207
-i " pandas.Series.eq PR07,SA01" \
340
208
-i " pandas.Series.floordiv PR07" \
341
209
-i " pandas.Series.ge PR07,SA01" \
342
210
-i " pandas.Series.gt PR07,SA01" \
343
211
-i " pandas.Series.hasnans SA01" \
344
- -i " pandas.Series.infer_objects RT03" \
345
212
-i " pandas.Series.is_monotonic_decreasing SA01" \
346
213
-i " pandas.Series.is_monotonic_increasing SA01" \
347
214
-i " pandas.Series.is_unique SA01" \
348
- -i " pandas.Series.item SA01" \
349
215
-i " pandas.Series.kurt RT03,SA01" \
350
216
-i " pandas.Series.kurtosis RT03,SA01" \
351
217
-i " pandas.Series.le PR07,SA01" \
@@ -360,10 +226,7 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
360
226
-i " pandas.Series.mod PR07" \
361
227
-i " pandas.Series.mode SA01" \
362
228
-i " pandas.Series.mul PR07" \
363
- -i " pandas.Series.nbytes SA01" \
364
- -i " pandas.Series.ndim SA01" \
365
229
-i " pandas.Series.ne PR07,SA01" \
366
- -i " pandas.Series.nunique RT03" \
367
230
-i " pandas.Series.pad PR01,SA01" \
368
231
-i " pandas.Series.plot PR02,SA01" \
369
232
-i " pandas.Series.pop RT03,SA01" \
@@ -381,7 +244,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
381
244
-i " pandas.Series.rtruediv PR07" \
382
245
-i " pandas.Series.sem PR01,RT03,SA01" \
383
246
-i " pandas.Series.shape SA01" \
384
- -i " pandas.Series.size SA01" \
385
247
-i " pandas.Series.skew RT03,SA01" \
386
248
-i " pandas.Series.sparse PR01,SA01" \
387
249
-i " pandas.Series.sparse.density SA01" \
@@ -427,7 +289,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
427
289
-i " pandas.Series.swaplevel SA01" \
428
290
-i " pandas.Series.to_dict SA01" \
429
291
-i " pandas.Series.to_frame SA01" \
430
- -i " pandas.Series.to_list RT03" \
431
292
-i " pandas.Series.to_markdown SA01" \
432
293
-i " pandas.Series.to_string SA01" \
433
294
-i " pandas.Series.truediv PR07" \
@@ -450,14 +311,10 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
450
311
-i " pandas.Timedelta.total_seconds SA01" \
451
312
-i " pandas.Timedelta.view SA01" \
452
313
-i " pandas.TimedeltaIndex.as_unit RT03,SA01" \
453
- -i " pandas.TimedeltaIndex.ceil SA01" \
454
314
-i " pandas.TimedeltaIndex.components SA01" \
455
315
-i " pandas.TimedeltaIndex.days SA01" \
456
- -i " pandas.TimedeltaIndex.floor SA01" \
457
- -i " pandas.TimedeltaIndex.inferred_freq SA01" \
458
316
-i " pandas.TimedeltaIndex.microseconds SA01" \
459
317
-i " pandas.TimedeltaIndex.nanoseconds SA01" \
460
- -i " pandas.TimedeltaIndex.round SA01" \
461
318
-i " pandas.TimedeltaIndex.seconds SA01" \
462
319
-i " pandas.TimedeltaIndex.to_pytimedelta RT03,SA01" \
463
320
-i " pandas.Timestamp PR07,SA01" \
@@ -528,10 +385,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
528
385
-i " pandas.Timestamp.weekday SA01" \
529
386
-i " pandas.Timestamp.weekofyear SA01" \
530
387
-i " pandas.Timestamp.year GL08" \
531
- -i " pandas.UInt16Dtype SA01" \
532
- -i " pandas.UInt32Dtype SA01" \
533
- -i " pandas.UInt64Dtype SA01" \
534
- -i " pandas.UInt8Dtype SA01" \
535
388
-i " pandas.api.extensions.ExtensionArray SA01" \
536
389
-i " pandas.api.extensions.ExtensionArray._accumulate RT03,SA01" \
537
390
-i " pandas.api.extensions.ExtensionArray._concat_same_type PR07,SA01" \
0 commit comments