Skip to content

TST: code coverage enhancements #12634

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
2 of 4 tasks
jreback opened this issue Mar 15, 2016 · 4 comments
Closed
2 of 4 tasks

TST: code coverage enhancements #12634

jreback opened this issue Mar 15, 2016 · 4 comments
Labels
CI Continuous Integration Closing Candidate May be closeable, needs more eyeballs good first issue Testing pandas testing functions or related to the test suite

Comments

@jreback
Copy link
Contributor

jreback commented Mar 15, 2016

We now have codecov here running on every build. You can get the browser extension to look at coverage in github

  • make sure extension is working
  • doc on how to use this / look at coverage
  • put additional excludes in .coveragerc to exclude things we don't care (Omit tests folders from coverage #12721)
  • increase coverage!
@jreback jreback added Testing pandas testing functions or related to the test suite Docs Difficulty Novice CI Continuous Integration Master Tracker High level tracker for similar issues labels Mar 15, 2016
@jreback jreback added this to the 0.18.1 milestone Mar 15, 2016
@gliptak
Copy link
Contributor

gliptak commented Mar 28, 2016

Where do you see this documented at? Thanks

@gliptak
Copy link
Contributor

gliptak commented Mar 28, 2016

#12721

jreback pushed a commit that referenced this issue Mar 31, 2016
xref #12634

Author: Gábor Lipták <gliptak@gmail.com>

Closes #12721 from gliptak/covomit and squashes the following commits:

8bfbb59 [Gábor Lipták] Omit tests folders from coverage
@jreback jreback modified the milestones: Next Major Release, 0.18.1 Apr 26, 2016
@jreback jreback modified the milestones: Next Major Release, High Level Issue Tracking Sep 24, 2017
@jbrockmendel
Copy link
Member

FYI, coverage report on cython code (as of e1dabf3):

Name                                      Stmts   Miss  Cover   Missing
-----------------------------------------------------------------------

pandas/_libs/algos.pxd                        5      1    80%   6
pandas/_libs/algos.pyx                      196     20    90%   60, 116, 224-233, 236-244, 246-249, 259-261
pandas/_libs/algos_common_helper.pxi       1884   1228    35%   25-49, 63-67, 70, 84-91, 97, 112-114, 123, 128-132, 138, 148-150, 159, 165, 167, 211-212, 226-230, 233, 241, 250, 261, 276-314, 323, 329, 331, 350, 375, 382-384, 407, 423-548, 557, 562-566, 574, 609-712, 721, 726-730, 738, 748-845, 859-863, 908-946, 955, 960-964, 972, 1007-1008, 1022-1026, 1072-1110, 1119, 1124-1128, 1136, 1146, 1164, 1171, 1178-1180, 1203, 1219-1641, 1656, 1658, 1704-1742, 1751, 1756-1760, 1768, 1803-1804, 1819, 1821, 1868-1906, 1915, 1920-1924, 1932, 1942, 1985-1987, 1999, 2015-2039, 2053-2057, 2060, 2067, 2071, 2102-2202, 2216-2220, 2223, 2235, 2241-2243, 2266-2340, 2358, 2362, 2365, 2372-2374, 2383-2385, 2397, 2413-2815, 2824-2830, 2835, 2844, 2858-2872, 2880-2895, 2898-2904, 2909, 2915-3100, 3112, 3120, 3125-3160, 3171, 3182, 3191-3200, 3209, 3216-3218, 3225-3227, 3236
pandas/_libs/algos_rank_helper.pxi          502    135    73%   16-17, 41, 67-68, 100, 102-103, 110, 115-116, 150, 170-173, 212, 215-216, 223, 234-235, 326-327, 426, 437-438, 469-471, 476, 495-510, 513, 518-617, 658, 676-677, 695-696, 703, 708-709, 755-757, 790-805
pandas/_libs/algos_take_helper.pxi         2056   1268    38%   14-17, 41-44, 68, 76-79, 99-108, 123-126, 155-164, 169-170, 179-182, 191, 207-210, 229, 237, 245-277, 301-304, 320-339, 383-386, 400-442, 451, 467-470, 485-537, 561-564, 588, 596-599, 619-628, 643-646, 675-684, 689-690, 699-702, 711, 727-730, 749, 757, 765-1379, 1423-1426, 1440-1577, 1601-1604, 1628, 1636-1639, 1659-1668, 1683-1686, 1715-1724, 1729-1730, 1739-1742, 1751, 1767-1770, 1789, 1797, 1805-2617, 2641-2644, 2668, 2676-2679, 2702-2703, 2723-2726, 2755-2764, 2769-2770, 2779-2782, 2791, 2807-2810, 2829, 2837, 2845-3137, 3161-3164, 3180-3199, 3243-3246, 3260-3302, 3311, 3327-3330, 3345-3397, 3421-3424, 3448, 3456-3459, 3482-3483, 3503-3506, 3535-3544, 3549-3550, 3559-3562, 3587-3590, 3609, 3617, 3625-3628, 3642-3643, 3647, 3654-3657, 3681-3684, 3700-3719, 3763-3766, 3780-3822, 3831, 3847-3850, 3865-3888, 3914-3917, 3941-3944, 3976-3979, 4002-4003, 4023-4026, 4055-4064, 4079-4082, 4091, 4107-4110, 4129, 4145-4437, 4461-4464, 4496-4499, 4543-4546, 4575-4584, 4599-4602, 4627-4630, 4649, 4665-4668, 4694-4697, 4721-4724, 4756-4759, 4803-4806, 4859-4862, 4887-4890, 4909, 4925-4955, 4969-4983, 4997
pandas/_libs/groupby.pyx                    137     49    64%   60, 96-128, 155, 191-205, 208-224, 264
pandas/_libs/groupby_helper.pxi             830    314    62%   9-18, 31, 81, 94, 141, 151, 190, 245, 263, 266, 274, 291-414, 424, 437, 463-518, 531, 536, 539, 547, 568, 582, 593, 607, 614, 628, 639, 654, 661-754, 768, 779, 800, 814, 851, 864, 878, 914, 927, 941, 977, 999, 1013, 1035, 1048-1245, 1258, 1308, 1321, 1350, 1371, 1393, 1399, 1409, 1431, 1436, 1450, 1486, 1507, 1517, 1538, 1553, 1573-1575
pandas/_libs/hashing.pyx                    102     20    80%   71, 76, 100, 103-113, 123, 140-149
pandas/_libs/hashtable.pyx                   85     26    69%   63-67, 72, 75-76, 92, 101-111, 116, 119-120, 127-129, 136-143
pandas/_libs/hashtable_class_helper.pxi     904    334    63%   21, 30, 43-56, 68, 82, 86, 93, 98, 103-106, 110, 116-136, 140, 147-152, 157-160, 164, 170-186, 190, 197, 202, 207, 210, 214, 220, 224, 229, 239-309, 316, 319, 331, 334, 340, 355, 360, 363, 368, 373, 379, 387-414, 428, 447-455, 498-541, 568-569, 576, 581, 584, 589, 594, 600, 608-635, 649, 668-676, 694-695, 711, 719-759, 779-780, 787, 792, 795, 800, 805, 811, 819, 829-832, 846, 860, 879-887, 930, 973, 1003-1005, 1010, 1015-1077, 1112-1118, 1135, 1151, 1179, 1235-1239, 1243, 1248, 1251, 1259, 1265, 1275, 1283, 1289-1291, 1307, 1329, 1352-1354, 1389, 1394, 1399, 1402-1408, 1421-1422, 1424-1428, 1435-1448, 1464-1468, 1487, 1509, 1514-1520
pandas/_libs/hashtable_func_helper.pxi      355     41    88%   14, 41, 73, 84, 121, 172, 199, 231, 242, 279-330, 356, 384, 394, 428, 477, 504, 536, 547, 584, 643, 680, 717
pandas/_libs/index.pyx                      354     88    75%   36, 51, 57, 67-75, 81, 86, 104, 120, 126, 130, 132, 146, 158, 165, 194, 200-205, 211, 218, 226, 232, 250, 253-259, 264, 267, 283, 292, 296, 363, 369, 377, 380, 383-386, 403, 406-418, 421, 424, 440-444, 463-465, 470, 473, 477, 479, 484, 486, 494, 497, 514, 544, 550, 566-582, 588, 595, 599
pandas/_libs/index_class_helper.pxi         113     44    61%   14, 17, 21, 25, 27, 30, 63, 66, 70, 74, 76, 79, 81-82, 85-120, 123, 127, 131, 133, 139, 142, 177, 180, 184, 188
pandas/_libs/interval.pyx                   120     36    70%   21, 25, 29, 33, 37, 40-45, 88-91, 95, 97, 102, 105, 111, 132-136, 142-143, 147, 160, 167, 172, 179-184, 189-197
pandas/_libs/intervaltree.pxi              1541   1137    26%   11-46, 62, 78, 86, 93, 103, 117, 130, 153, 173-184, 190, 205-392, 408-409, 420-478, 497-902, 918-919, 948, 972, 988, 1022, 1028-1072, 1088-1089, 1118, 1142, 1158, 1183, 1198-1242, 1258-1259, 1288, 1312, 1328, 1368-1412, 1428-1429, 1458, 1482, 1498, 1523, 1532, 1538-1752, 1768-1769, 1780-1838, 1857-2262, 2278-2279, 2290-2348, 2367-2432, 2448-2449, 2460-2518, 2537-2602, 2618-2619, 2630-2688, 2707-2772, 2788-2789, 2800-2858, 2873-2924
pandas/_libs/join.pyx                       146     11    92%   79, 249-256, 259-261, 264-267
pandas/_libs/join_func_helper.pxi          3690   3105    16%   15-1267, 1326-1332, 1345-1346, 1360, 1369-1372, 1384-1386, 1391-1397, 1439-1801, 1814-1815, 1829, 1838-1841, 1853-1855, 1860-1979, 1992-1993, 2007, 2016-2019, 2031-2033, 2038-2157, 2170-2171, 2185, 2194-2197, 2209-2211, 2216-2335, 2348-2349, 2363, 2372-2375, 2387-2389, 2394-2513, 2526-2527, 2541, 2550-2553, 2565-2567, 2572-2691, 2704-2705, 2719, 2728-2731, 2743-2745, 2750-2869, 2882-2883, 2897, 2906-2909, 2921-2923, 2928-3047, 3060-3061, 3075, 3084-3087, 3099-3101, 3106-3225, 3238-3239, 3253, 3262-3265, 3277-3279, 3284-3403, 3416-3417, 3431, 3440-3443, 3455-3457, 3462-5364, 5375-5376, 5388, 5396-5398, 5407-5409, 5414-5509, 5520-5521, 5533, 5541-5543, 5552-5554, 5559-5654, 5665-5666, 5678, 5686-5688, 5697-5699, 5704-5799, 5810-5811, 5823, 5831-5833, 5842-5844, 5849-5944, 5955-5956, 5968, 5976-5978, 5987-5989, 5994-6089, 6100-6101, 6113, 6121-6123, 6132-6134, 6139-6234, 6245-6246, 6258, 6266-6268, 6277-6279, 6284-6379, 6429-6433, 6484-6488, 6520-6524, 6535-6536, 6548, 6556-6558, 6567-6569, 6574-6669, 6680-6681, 6693, 6701-6703, 6712-6714, 6719-6807
pandas/_libs/join_helper.pxi               1596    601    62%   18-168, 188, 198, 203-213, 227, 240, 245-255, 262, 295, 362, 396-640, 664-665, 672-677, 684, 689-690, 722-728, 739-744, 751, 759-763, 774, 806-807, 820, 855-861, 903-909, 924, 954, 996, 1018, 1051, 1118, 1152-1396, 1420-1421, 1428-1433, 1440, 1445-1446, 1478-1484, 1495-1500, 1507, 1515-1519, 1530, 1562-1563, 1576, 1680, 1774, 1908, 1926-1928, 1940-1941, 1954, 1989-2000, 2037-2051, 2058, 2088, 2130, 2152, 2167, 2169, 2173-2174, 2185, 2191-2193, 2214-2217, 2219-2222, 2226-2232, 2252, 2258-2260
pandas/_libs/lib.pyx                        976    224    77%   32, 93-111, 134, 149, 153, 157, 159, 164, 171, 178, 302, 321-336, 360, 387, 427, 490, 561-579, 672, 687-688, 717, 746-747, 762, 792-808, 819-820, 833, 863, 876, 942, 956-970, 1048, 1056, 1066-1074, 1135, 1139, 1142, 1180-1194, 1202-1216, 1244-1250, 1255-1260, 1295-1304, 1319-1354, 1396, 1456-1499, 1501-1514, 1520, 1531, 1551, 1609, 1634, 1659-1660, 1667, 1682, 1705-1712, 1716, 1723, 1733, 1736, 1741, 1748, 1753, 1763, 1767, 1779, 1782, 1789, 1826, 1833, 1836-1839
pandas/_libs/parsers.pyx                   1265    211    83%   100-101, 305-313, 316-334, 336-379, 404, 430, 443, 466-467, 505, 577-580, 590, 596, 607-610, 634, 643, 681-690, 695, 701-703, 716, 725, 732-735, 785, 787-788, 886-889, 912, 934, 950, 963, 977, 1015-1018, 1021, 1026, 1029-1032, 1142, 1150, 1211, 1265-1266, 1287, 1295, 1298, 1302, 1312, 1333, 1340, 1344, 1347, 1374, 1381, 1383, 1395-1406, 1430, 1440, 1493, 1546, 1579-1581, 1588, 1605, 1664, 1668, 1676, 1693, 1712, 1752, 1822, 1847, 1857, 1886-1891, 1895, 1923, 1962-2026, 2053, 2097, 2117, 2122, 2139, 2145, 2165, 2187, 2198, 2202, 2276, 2298-2308, 2342, 2369
pandas/_libs/period.pyx                     646    144    78%   180, 190, 198, 234, 240, 254, 261, 283, 289, 291, 293, 298, 301, 303, 305, 307, 309, 311-314, 320-324, 329, 339, 357, 361-363, 365, 367, 369-370, 381, 388-390, 401, 415, 418, 420, 422, 424, 426, 428, 430, 432, 434, 436, 438, 487, 493, 505, 513, 526, 536, 542-554, 561, 566-573, 577, 589, 600-601, 610-611, 628, 633-639, 645-646, 668-669, 674, 705, 724, 727, 748-750, 765-767, 790-792, 823, 827, 833, 866, 871, 876, 881, 886, 891, 896, 901, 905, 910, 914, 919, 924, 929, 934-938, 946, 950, 953, 958, 970-974, 978, 1141-1142, 1201, 1206-1208, 1217
pandas/_libs/properties.pyx                  40     17    58%   14-16, 22, 27, 45-64, 67, 71
pandas/_libs/reshape.pyx                      5      0   100%
pandas/_libs/reshape_helper.pxi             131     66    50%   14-254, 302, 350, 398, 446, 494
pandas/_libs/sparse.pyx                     409     75    82%   30-60, 67, 71, 76, 113, 125, 128, 131, 135, 170, 186, 210, 240, 261, 271-279, 330-338, 356, 360, 368, 371, 386, 391, 402-404, 416, 419, 436, 519, 538, 564, 594-637, 642, 658-661, 681, 729, 741, 806-818
pandas/_libs/sparse_op_helper.pxi          3017    708    77%   11, 16, 22, 25, 30-33, 38, 44, 49, 55, 58, 64, 77, 178, 236, 248-258, 359, 417, 429-439, 540, 598, 610-620, 721, 779, 791-801, 902, 960, 972-982, 1083, 1141, 1153-1525, 1626, 1684, 1696-1706, 1751-1759, 1807, 1865, 1877-1887, 1988, 2046, 2058-2068, 2169, 2227, 2239-2249, 2350, 2408, 2420-2430, 2475-2483, 2531, 2589, 2601-2611, 2712, 2770, 2782-2792, 2893, 2951, 2963-2973, 3018-3026, 3074, 3102-3104, 3132, 3144-3154, 3199-3207, 3255, 3283-3285, 3313, 3325-3335, 3380-3388, 3436, 3464-3466, 3494, 3506-3516, 3561-3569, 3617, 3645-3647, 3675, 3687-3697, 3742-3750, 3798, 3826-3828, 3856, 3868-3878, 3923-3931, 3979, 4007-4009, 4037, 4049-4059, 4104-4112, 4160, 4188-4190, 4218, 4230-4240, 4285-4293, 4341, 4369-4371, 4399, 4411-4421, 4466-4474, 4522, 4550-4552, 4580, 4592-4602, 4647-4655, 4703, 4731-4733, 4761, 4773-4783, 4828-4836, 4884, 4912-4914, 4942, 4954-4964, 5009-5017, 5065, 5093-5095, 5123, 5135-5326, 5359-5367, 5427, 5461-5463, 5485, 5497-5688, 5721-5729, 5789, 5823-5825, 5847, 5859-5864
pandas/_libs/src/inference.pyx              879    203    77%   1-18, 22, 26, 30, 34, 38, 42, 48-115, 138, 171, 178, 192, 196, 200, 204, 215, 337, 350, 382, 391-392, 399, 436-437, 457, 524, 534, 542, 550, 562, 574, 584, 587, 590, 593, 604-608, 614, 619, 626-630, 643, 654, 657, 660-667, 670, 673, 676, 684, 687, 691, 703, 706, 710, 721, 724, 728, 739, 742, 746, 753, 756, 760, 772, 775, 779, 791-816, 823-833, 840, 846, 849, 853, 864, 868, 877, 887, 907, 910, 914, 925, 929, 940, 944, 956, 960, 967, 971, 978, 981, 985, 992, 996, 1010-1018, 1116, 1118-1119, 1132, 1160, 1168, 1178-1185, 1231-1232, 1234-1235, 1246-1248, 1350-1353, 1357-1358, 1360-1361, 1365, 1367-1368, 1370-1375, 1380, 1384-1385, 1408-1409, 1457, 1487, 1500, 1539, 1581, 1598, 1629, 1651, 1685, 1691, 1694-1698, 1710, 1713-1719
pandas/_libs/src/reduce.pyx                 356     51    86%   2-8, 29-30, 54, 74, 76-77, 81, 123, 173-176, 200, 204-205, 209, 211, 214, 218, 301-304, 313, 324, 328-329, 335, 338, 342, 418, 426, 440, 444, 458, 461, 468, 471, 478-482, 541-549, 567, 570, 588, 601
pandas/_libs/src/skiplist.pyx                75     18    76%   14, 18-33, 39-50, 55-61, 75, 114, 132
pandas/_libs/testing.pyx                    125     17    86%   28, 31, 34, 37, 40, 46, 62-65, 124-126, 130, 159, 181-183, 194
pandas/_libs/tslib.pyx                     2168    278    87%   98, 113, 135-136, 157, 215, 343, 481-483, 646-647, 730, 746-748, 891, 894, 899, 965, 992, 997, 1014, 1018, 1023-1025, 1037, 1083, 1117-1120, 1125, 1141-1142, 1157-1159, 1172, 1178, 1204-1226, 1235, 1245, 1259, 1263, 1276, 1294-1295, 1298, 1339, 1348, 1356, 1376, 1380, 1386, 1397-1409, 1416, 1430, 1436-1438, 1440, 1446-1450, 1457-1461, 1464, 1476, 1484, 1488-1491, 1494, 1497-1503, 1506-1517, 1522, 1592, 1631, 1669-1670, 1751-1753, 1758, 1779-1780, 1795-1796, 1816-1819, 1839, 1886, 1976, 1997, 2094, 2096-2115, 2147, 2152-2155, 2192-2196, 2254-2255, 2304-2308, 2330, 2346, 2349, 2365-2366, 2383-2398, 2404, 2421-2429, 2443, 2487, 2509, 2516, 2599, 2632, 2634, 2640, 2681, 2691, 2869-2870, 2878, 2911, 2981, 2985, 3014-3026, 3047-3051, 3062, 3088, 3111-3112, 3120, 3128, 3130, 3150, 3152, 3167, 3213, 3224, 3241, 3282-3292, 3306, 3311, 3325, 3341, 3346, 3359, 3365, 3391, 3404, 3413-3417, 3424, 3535-3538, 3554-3555, 3561-3563, 3606, 3614, 3667-3668, 3678, 3689-3690, 3697-3698, 3712, 3719-3720, 3727-3728, 3735, 3787, 3794, 3797, 3814-3817, 3822, 3856-3857, 3874-3875, 3899-3900, 3917
pandas/_libs/tslibs/__init__.py               0      0   100%
pandas/_libs/tslibs/fields.pyx              410     26    94%   45-50, 99-100, 107, 112, 164-165, 193-194, 231-232, 261-262, 300-301, 330-331, 365, 571-574, 578
pandas/_libs/tslibs/frequencies.pyx          58      3    95%   18, 76, 196
pandas/_libs/tslibs/parsing.pyx             362     55    85%   33-34, 69, 94, 104, 151, 179, 183, 201, 257, 308, 346, 349-362, 364, 372, 385, 398, 417, 420-422, 429, 440-441, 448, 459, 465, 484, 510, 544, 591, 600-610, 624, 628-631, 668, 681
pandas/_libs/tslibs/strptime.pyx            332     99    70%   18-25, 55, 63, 103-104, 114-123, 162-163, 178-180, 185-191, 214-222, 224, 226-229, 232, 235, 238, 247-254, 256, 258, 265-269, 275-277, 285-300, 323-327, 342-351, 423, 427-432, 479-483, 500, 514, 520, 539, 589, 630, 651
pandas/_libs/tslibs/timedeltas.pyx          138     16    88%   59, 88, 103, 154-155, 183-185, 190-191, 204, 222-223, 247, 272, 285
pandas/_libs/tslibs/timezones.pyx           145     24    83%   19, 41, 45, 49, 54, 58, 76, 96, 109, 113, 126, 146, 162, 169, 177-178, 184, 199, 217, 239, 267-269, 295
pandas/_libs/window.pyx                     778     54    93%   31-32, 77, 79, 86, 119, 150-152, 188-190, 233, 251, 297, 305, 420, 431, 440, 522, 541, 553, 638, 658, 672, 784, 805, 818, 906, 931, 945, 1053, 1069, 1087, 1103, 1113, 1120, 1125, 1130, 1135, 1141, 1151, 1193, 1292, 1311, 1412, 1429, 1476, 1498, 1522, 1563, 1632-1633, 1692-1694

@TomAugspurger TomAugspurger removed the Master Tracker High level tracker for similar issues label Jul 6, 2018
@TomAugspurger TomAugspurger removed this from the High Level Issue Tracking milestone Jul 6, 2018
@jbrockmendel jbrockmendel added the Closing Candidate May be closeable, needs more eyeballs label Sep 22, 2020
@mroeschke
Copy link
Member

It appears the issue has been taken as far as it can go. If we have more specific coverage issues we can create a new issue. Closing

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
CI Continuous Integration Closing Candidate May be closeable, needs more eyeballs good first issue Testing pandas testing functions or related to the test suite
Projects
None yet
Development

No branches or pull requests

6 participants