You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'd expect that unique returns the original datatype or always an array.
I'd prefer the original data_type since arrays do not provide a to_series function but indexes do.
So when working with pipelines, this is much more convenient
Output of pd.show_versions()
## INSTALLED VERSIONS
commit: None
python: 3.5.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
Basically, before 0.19 Index.unique() returned either an index or an array depending on the data type. Therefore we choose to always return an Index for consistency.
The problem with the return type of Series.unique(), is that a Series has a default index that is meaningless for the unique values. Therfore we choose to stick to the return type of array in this case.
Those choices indeed cause an inconsistency between Index and Series.
A small, complete example of the issue
Expected Output
I'd expect that unique returns the original datatype or always an array.
I'd prefer the original data_type since arrays do not provide a to_series function but indexes do.
So when working with pipelines, this is much more convenient
Output of
pd.show_versions()
commit: None
python: 3.5.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.19.0
nose: 1.3.7
pip: 8.1.2
setuptools: 27.2.0
Cython: 0.24.1
numpy: 1.11.2
scipy: 0.18.1
statsmodels: 0.6.1
xarray: None
IPython: 5.1.0
sphinx: 1.3.1
patsy: 0.4.1
dateutil: 2.5.3
pytz: 2016.7
blosc: None
bottleneck: 1.1.0
tables: 3.2.2
numexpr: 2.6.1
matplotlib: 1.5.1
openpyxl: 2.4.0
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.3
lxml: 3.6.4
bs4: 4.5.1
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.1.0
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.42.0
pandas_datareader: None
The text was updated successfully, but these errors were encountered: