Description
Code Sample, a copy-pastable example if possible
>>> df
0 1 2 3
0 1 21 51 61
1 2 22 52 62
2 3 23 53 63
>>> df[0:0]
Empty DataFrame
Columns: [0, 1, 2, 3]
Index: []
>>> df.loc[0:0]
0 1 2 3
0 1 21 51 61
For loc, slicing is incorrect
The behavior exhibited by slicing of loc is incosistent with python array slicing.
For [0:0] it should have returned empty, but it is returning a row.
Expected Output
Similar to code show below for python array, pd.DataFrame.loc slicing should produce empty
E.g. Following code slices empty for [0:0]
>>> l = [0,1,2]
>>> l[0:0]
[]
Output of pd.show_versions()
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Darwin
OS-release: 16.1.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.19.1
nose: None
pip: 9.0.1
setuptools: 25.2.0
Cython: None
numpy: 1.10.4
scipy: 0.17.0
statsmodels: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.2
pytz: 2016.3
blosc: None
bottleneck: None
tables: None
numexpr: None
matplotlib: 1.5.1
openpyxl: 2.2.0-b1
xlrd: 0.9.4
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.0.12
pymysql: None
psycopg2: None
jinja2: None
boto: None
pandas_datareader: None