Date Type Corrupting Other Types in Group-by/Apply #15670
Labels
Bug
Dtype Conversions
Unexpected or buggy dtype conversions
Duplicate Report
Duplicate issue or pull request
Groupby
Milestone
Uh oh!
There was an error while loading. Please reload this page.
Code Sample, a copy-pastable example if possible
Problem description
When I change the type of the Date column to a Pandas datetime, it causes other columns' types to change in unexpected ways when doing a group-by/apply. Notice the contents of the "Str" column changes to a numeric type in the final group-by/apply (a contributing factor is probably that one of the elements is the string "inf"). The "inf" value has become inf, and the "foo" value has become NaN.
Expected Output
I expect the Str column to remain a string type, and contain the original strings. I.e.:
Output of
pd.show_versions()
pandas: 0.18.1
nose: 1.3.7
pip: None
setuptools: 0.6
Cython: 0.24.1
numpy: 1.11.1
scipy: 0.18.0
statsmodels: 0.6.1
xarray: 0.7.0
IPython: 5.0.0
sphinx: 1.3.5
patsy: 0.4.1
dateutil: 2.5.3
pytz: 2016.6.1
blosc: None
bottleneck: 1.1.0
tables: 3.2.3.1
numexpr: 2.6.1
matplotlib: 1.5.1
openpyxl: 2.3.2
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.2
lxml: 3.6.1
bs4: 4.4.1
html5lib: 0.999
httplib2: None
apiclient: None
sqlalchemy: 1.0.13
pymysql: 0.6.7.None
psycopg2: 2.5.4 (dt dec pq3 ext)
jinja2: 2.8
boto: 2.40.0
pandas_datareader: None
The text was updated successfully, but these errors were encountered: