-
-
Notifications
You must be signed in to change notification settings - Fork 18.8k
Description
Code Sample, a copy-pastable example if possible
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import pandas as pd
csv_path = 'test.csv'
df = pd.read_csv(csv_path, delimiter=';', quotechar='"',
decimal=',', encoding="ISO-8859-1", dtype={'FOO': str})
df.FOO = df.FOO.map(lambda n: n.zfill(6))
print(df)
test.csv:
FOO;BAR
01,23;4,56
1,23;45,6
;987
Problem description
When I use dtype={'FOO': str}
, I expect pandas to treat the column as a string. This seems to work, but when an empty cell is present Pandas seems to switch to float.
Expected Output
FOO BAR
0 001,23 4.56
1 001,23 45.60
2 000000 987.00
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Linux
OS-release: 4.10.0-35-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.20.3
pytest: 3.2.2
pip: 9.0.1
setuptools: 20.7.0
Cython: None
numpy: 1.13.3
scipy: 0.19.0
xarray: None
IPython: 6.2.1
sphinx: None
patsy: None
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 1.0b10
sqlalchemy: 1.1.14
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None