Skip to content

Pandas not preserving date type on reading back parquet #20089

Closed
@euclides-filho

Description

@euclides-filho

Code Sample, a copy-pastable example if possible

from datetime import datetime, date
import pandas as pd

df = pd.DataFrame([(1, "x", date.today(), datetime(2018, 1, 2, 18, 53))], 
                  columns=["number", "string", "date", "datetime"])
df.dtypes

# number               int64
# string              object
# date                object
# datetime    datetime64[ns]
# dtype: object

df["date"][0]
# datetime.date(2018, 3, 9)

df.to_parquet("test.gz.parquet", compression='gzip', engine='pyarrow')

dfp = pd.read_parquet("test.gz.parquet")
dfp.dtypes

# number               int64
# string              object
# date                datetime64[ns] <- !!!! Type change
# datetime    datetime64[ns]
# dtype: object

However if I do:

import pyarrow.parquet as pq
pq.read_table("test.gz.parquet")

I get:

pyarrow.Table
number: int64
string: string
date: date32[day]
datetime: timestamp[ms]
__index_level_0__: int64
metadata
--------
{b'pandas': b'{"index_columns": ["__index_level_0__"], "column_indexes": [{"na'
            b'me": null, "field_name": null, "pandas_type": "unicode", "numpy_'
            b'type": "object", "metadata": {"encoding": "UTF-8"}}], "columns":'
            b' [{"name": "number", "field_name": "number", "pandas_type": "int'
            b'64", "numpy_type": "int64", "metadata": null}, {"name": "string"'
            b', "field_name": "string", "pandas_type": "unicode", "numpy_type"'
            b': "object", "metadata": null}, {"name": "date", "field_name": "d'
            b'ate", "pandas_type": "date", "numpy_type": "object", "metadata":'
            b' null}, {"name": "datetime", "field_name": "datetime", "pandas_t'
            b'ype": "datetime", "numpy_type": "datetime64[ns]", "metadata": nu'
            b'll}, {"name": null, "field_name": "__index_level_0__", "pandas_t'
            b'ype": "int64", "numpy_type": "int64", "metadata": null}], "panda'
            b's_version": "0.22.0"}'}

Problem description

Pandas not preserving the date type on reading back parquet.
When pandas read a dataframe that originally had a date type column it converts it to Timestamp type. It is clear that it is a pandas problem since reading it using pyarrow, we get the original correct type

Expected Output

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.4.final.0
python-bits: 64
OS: Linux
OS-release: 4.13.0-36-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: pt_BR.UTF-8

pandas: 0.22.0
pytest: None
pip: 9.0.1
setuptools: 38.4.0
Cython: None
numpy: 1.14.0
scipy: 1.0.0
pyarrow: 0.8.0
xarray: None
IPython: 6.2.1
sphinx: None
patsy: 0.5.0
dateutil: 2.6.1
pytz: 2017.3
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.1.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 1.0.1
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: 0.1.2
fastparquet: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    DatetimeDatetime data dtypeDtype ConversionsUnexpected or buggy dtype conversions

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions