Skip to content

DataFrame.to_sparse fill_value keyword doesn't seem to fill NA #20172

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
minggli opened this issue Mar 10, 2018 · 1 comment · Fixed by #28425
Closed

DataFrame.to_sparse fill_value keyword doesn't seem to fill NA #20172

minggli opened this issue Mar 10, 2018 · 1 comment · Fixed by #28425
Labels
Sparse Sparse Data Type

Comments

@minggli
Copy link
Contributor

minggli commented Mar 10, 2018

>>> from pandas import *
>>> from numpy.random import randn
>>>
>>> df = DataFrame(randn(20, 4))
>>> df = df.applymap(lambda x: np.nan if x > 0 else x)
>>> sparse_df = df.to_sparse(fill_value=0.35)
>>> sparse_df
           0         1         2         3
0  -1.101095       NaN -1.512058 -0.283055
1  -0.460331       NaN -0.995369       NaN
2        NaN -0.835043 -1.367358 -0.950400
3  -0.704320 -0.746556 -0.389821       NaN
4        NaN -0.573624       NaN -1.033302
5        NaN       NaN -1.684434 -1.805903
6        NaN       NaN       NaN       NaN
7  -0.129019 -2.279948 -0.229312 -0.725433
8  -1.264768 -0.050307       NaN -0.453808
9  -0.976076 -0.127872 -0.794526       NaN
10 -0.126079 -0.774120 -0.424461 -0.061588
11 -0.474522       NaN -0.437307 -0.727405
12       NaN -0.883299       NaN -1.435336
13 -1.588188       NaN -1.740614 -0.645563
14 -1.218019       NaN       NaN -0.341365
15 -0.522648 -1.377164       NaN       NaN
16       NaN -1.193746 -1.295383       NaN
17 -1.445435 -0.034316 -0.879550 -1.570954
18       NaN -0.060612       NaN       NaN
19       NaN       NaN -0.009722       NaN

Problem description

I've looked at issues log and don't seem to find an issue regarding this. It appears that DataFrame.to_sparse keyword fill_value which subsequently injected into SparseDataFrame doesn't seem to do anything.

Is it actually a bug or the documentation isn't accurate enough?

Expected Output


           0         1         2         3
0  -1.101095  0.350000 -1.512058 -0.283055
1  -0.460331  0.350000 -0.995369  0.350000
2   0.350000 -0.835043 -1.367358 -0.950400
3  -0.704320 -0.746556 -0.389821  0.350000
4   0.350000 -0.573624  0.350000 -1.033302
5   0.350000  0.350000 -1.684434 -1.805903
6   0.350000  0.350000  0.350000  0.350000
7  -0.129019 -2.279948 -0.229312 -0.725433
8  -1.264768 -0.050307  0.350000 -0.453808
9  -0.976076 -0.127872 -0.794526  0.350000
10 -0.126079 -0.774120 -0.424461 -0.061588
11 -0.474522  0.350000 -0.437307 -0.727405
12  0.350000 -0.883299  0.350000 -1.435336
13 -1.588188  0.350000 -1.740614 -0.645563
14 -1.218019  0.350000  0.350000 -0.341365
15 -0.522648 -1.377164  0.350000  0.350000
16  0.350000 -1.193746 -1.295383  0.350000
17 -1.445435 -0.034316 -0.879550 -1.570954
18  0.350000 -0.060612  0.350000  0.350000
19  0.350000  0.350000 -0.009722  0.350000

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Darwin
OS-release: 17.4.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: en_GB.UTF-8

pandas: 0.22.0
pytest: None
pip: 9.0.1
setuptools: 36.3.0
Cython: None
numpy: 1.14.1
scipy: 0.19.1
pyarrow: None
xarray: None
IPython: 5.3.0
sphinx: None
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2018.3
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.0.0
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: 4.5.3
html5lib: 0.9999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

@TomAugspurger
Copy link
Contributor

to_sparse is being removed, but fill_value=NaN means that NaN is the "sparse value" not stored in memory. It doesn't mean that it'll be filled.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Sparse Sparse Data Type
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants