-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Description
Code Sample, a copy-pastable example if possible
test_json = [{"_id": 'a', 'date': datetime.now()}, {"_id": 'b', 'date': datetime.now()}]
test_df = pd.DataFrame(test_json)
new_df = test_df.copy()
new_df["date"] = None
new_df.update(test_df)
print(test_df.head())
print(new_df.head())
Problem description
When using update function with datetime data, it is automatically converted to timestamp, which for me it seems like an abnormal behaviour. Code from above would output
_id date
0 a 2019-11-07 15:50:06.072158
1 b 2019-11-07 15:50:06.072158
_id date
0 a 1573141806072158000
1 b 1573141806072158000
Expected Output
_id date
0 a 2019-11-07 15:50:06.072158
1 b 2019-11-07 15:50:06.072158
_id date
0 a 2019-11-07 15:50:06.072158
1 b 2019-11-07 15:50:06.072158
Output of pd.show_versions()
[paste the output of pd.show_versions()
here below this line]
INSTALLED VERSIONS
commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 61 Stepping 4, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 0.25.1
numpy : 1.16.4
pytz : 2019.2
dateutil : 2.8.0
pip : 19.2.2
setuptools : 41.0.1
Cython : 0.29.13
pytest : None
hypothesis : None
sphinx : 2.1.2
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.4.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.7.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : 4.4.1
matplotlib : 3.1.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.1
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None