Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
import pandas as pd
import numpy as np
df = pd.DataFrame({"col": [np.array([.1, .2], dtype=float)]})
np.sin(df['col'].iloc[0]) # This works fine
df["col"].apply(np.sin) # This breaks
Raises:
AttributeError: 'numpy.ndarray' object has no attribute 'sin'
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "~/main.py", line 6, in <module>
df["col"].apply(np.sin)
File "~/anaconda3/envs/pandas-issue/lib/python3.7/site-packages/pandas/core/series.py", line 3840, in apply
return f(self)
File "~/anaconda3/envs/pandas-issue/lib/python3.7/site-packages/pandas/core/series.py", line 679, in __array_ufunc__
result = getattr(ufunc, method)(*inputs, **kwargs)
TypeError: loop of ufunc does not support argument 0 of type numpy.ndarray which has no callable sin method
Problem description
When I have a pd.Series where each row is a numerical numpy array, I can't apply numpy functions to them, I tried np.sin, np.cos, np.exp, but I think it's a general problem. I can apply them to individual rows manually and it works fine.
Moreover, If I import tqdm with tqdm.pandas and use progress_apply instead of apply it also works just fine!
Expected Output
0 [0.09983341664682815, 0.19866933079506122]
Name: col, dtype: object
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.3.0-46-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.3
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.1.3.post20200325
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None