Skip to content

BUG: series.where(boolean) works but df.where(boolean) does not #35560

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
2 of 3 tasks
dycw opened this issue Aug 5, 2020 · 1 comment
Closed
2 of 3 tasks

BUG: series.where(boolean) works but df.where(boolean) does not #35560

dycw opened this issue Aug 5, 2020 · 1 comment
Labels
Bug Duplicate Report Duplicate issue or pull request

Comments

@dycw
Copy link

dycw commented Aug 5, 2020

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

Code Sample, a copy-pastable example

import pandas as pd

x = pd.Series(range(3), dtype=float)
mask = pd.Series([True, False, nan], dtype=pd.BooleanDtype())
print(f"x=\n{x}\n\nmask=\n{mask}\n\nx.where(mask)=\n{x.where(mask)}")

x=
0   0.00000
1   1.00000
2   2.00000
dtype: float64

mask=
0     True
1    False
2     <NA>
dtype: boolean

x.where(mask)=
0   0.00000
1       nan
2       nan
dtype: float64
x_df = x.to_frame()
mask_df = mask.to_frame()
print(f"x_df=\n{x_df}\n\nmask_df=\n{mask_df}")
x_df.where(mask_df)

x_df=
        0
0 0.00000
1 1.00000
2 2.00000

mask_df=
       0
0   True
1  False
2   <NA>

---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-9-7e122bb223a4> in <module>
      2 mask_df = mask.to_frame()
      3 print(f"x_df=\n{x_df}\n\nmask_df=\n{mask_df}")
----> 4 x_df.where(mask_df)

~/miniconda3/envs/dts/lib/python3.8/site-packages/pandas/core/generic.py in where(self, cond, other, inplace, axis, level, errors, try_cast)
   8990         """
   8991         other = com.apply_if_callable(other, self)
-> 8992         return self._where(
   8993             cond, other, inplace, axis, level, errors=errors, try_cast=try_cast
   8994         )

~/miniconda3/envs/dts/lib/python3.8/site-packages/pandas/core/generic.py in _where(self, cond, other, inplace, axis, level, errors, try_cast)
   8847 
   8848         else:
-> 8849             new_data = self._mgr.where(
   8850                 other=other,
   8851                 cond=cond,

~/miniconda3/envs/dts/lib/python3.8/site-packages/pandas/core/internals/managers.py in where(self, other, cond, align, errors, try_cast, axis)
    511             other = extract_array(other, extract_numpy=True)
    512 
--> 513         return self.apply(
    514             "where",
    515             align_keys=align_keys,

~/miniconda3/envs/dts/lib/python3.8/site-packages/pandas/core/internals/managers.py in apply(self, f, align_keys, **kwargs)
    394                 applied = b.apply(f, **kwargs)
    395             else:
--> 396                 applied = getattr(b, f)(**kwargs)
    397             result_blocks = _extend_blocks(applied, result_blocks)
    398 

~/miniconda3/envs/dts/lib/python3.8/site-packages/pandas/core/internals/blocks.py in where(self, other, cond, errors, try_cast, axis)
   1299         import pandas.core.computation.expressions as expressions
   1300 
-> 1301         cond = _extract_bool_array(cond)
   1302         assert not isinstance(other, (ABCIndexClass, ABCSeries, ABCDataFrame))
   1303 

~/miniconda3/envs/dts/lib/python3.8/site-packages/pandas/core/internals/blocks.py in _extract_bool_array(mask)
   2862 
   2863     assert isinstance(mask, np.ndarray), type(mask)
-> 2864     assert mask.dtype == bool, mask.dtype
   2865     return mask

AssertionError: object

Problem description

If the truthiness of boolean Series is defined, then it certainly should be for DataFrames.

Expected Output

Equivalent to doing this columnwise, i.e.:

expected = pd.concat([x.where(m) for (_, x), (_, m) in zip(x_df.items(), mask_df.items())], axis=1)
print(f"expected=\n{expected}")

expected=
        0
0 0.00000
1     nan
2     nan

Output of pd.show_versions()

INSTALLED VERSIONS

commit : d9fff27
python : 3.8.3.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-42-generic
Version : #46-Ubuntu SMP Fri Jul 10 00:24:02 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_HK.UTF-8
LOCALE : en_HK.UTF-8

pandas : 1.1.0
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 49.2.0.post20200714
Cython : None
pytest : 6.0.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.8.5 (dt dec pq3 ext lo64)
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: None
bs4 : 4.9.1
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.2.2
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.0
sqlalchemy : 1.3.18
tables : None
tabulate : 0.8.3
xarray : None
xlrd : None
xlwt : None
numba : None

@dycw dycw added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Aug 5, 2020
@dycw dycw changed the title BUG: series.where(BooleanDtype) works but df.where(BooleanDtype) does not BUG: series.where(boolean) works but df.where(boolean) does not Aug 5, 2020
@TomAugspurger
Copy link
Contributor

Thanks for the report. Duplicate of #35429 I think, if you're interested in looking.

@simonjayhawkins simonjayhawkins added Duplicate Report Duplicate issue or pull request and removed Needs Triage Issue that has not been reviewed by a pandas team member labels Aug 5, 2020
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Duplicate Report Duplicate issue or pull request
Projects
None yet
Development

No branches or pull requests

3 participants