-
-
Notifications
You must be signed in to change notification settings - Fork 18.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
BUG: Dtypes change when using replace
with nullable dtypes
#40732
Comments
@tamargrey thanks for the report! This is indeed not the desired behaviour, and I agree that we should try to preserve the nullable dtype instead of returning the numpy dtype. On the development branch, I get slightly different behaviour:
so not resulting in truncated integers, but in object dtype (it at least doesn't result in data loss, but it should still preserve the Float64 dtype). |
Using to_replace and value parameters seem to produce the desired behavior in 3 of the 4 cases. assert floats.replace(to_replace=1.0, value=9).dtype == pd.Float64Dtype() #True
assert floats.replace(to_replace=1.0, value=9.0).dtype == pd.Float64Dtype() #True
assert ints.replace(to_replace=1, value=9).dtype == pd.Int64Dtype() #True
assert ints.replace(to_replace=1, value=9.0).dtype == pd.Int64Dtype() #True However, the undesired behavior is reproduced when passing lists for to_replace and value params. For example, assert floats.replace(to_replace=[1.0,2.0], value=[9.0,10.0]).dtype == 'float64' #True, desired dtype is pd.Float64Dtype() |
Also for the string dtype, it resuls in object dtype:
(from #40755 (comment)) |
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
Problem description
The dtype of the resulting series is being changed when
replace
is being called withInt64Dtype
andFloat64Dtype
series'.There are two problems here, from what I can tell:
int64
andfloat64
.replace
on a float series with an integer value, the resulting series gets converted to ints, truncating the decimalsExpected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : f2c8480
python : 3.8.2.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Sun Jul 5 00:43:10 PDT 2020; root:xnu-6153.141.1~9/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.3
numpy : 1.19.5
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 41.2.0
Cython : None
pytest : 6.0.1
hypothesis : None
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 0.8.7
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 3.0.0
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
The text was updated successfully, but these errors were encountered: