Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TestDataFrame.test_from_records_sequencelike: segfault on armel #4473

Closed
yarikoptic opened this issue Aug 6, 2013 · 24 comments
Closed

TestDataFrame.test_from_records_sequencelike: segfault on armel #4473

yarikoptic opened this issue Aug 6, 2013 · 24 comments
Labels
Testing pandas testing functions or related to the test suite
Milestone

Comments

@yarikoptic
Copy link
Contributor

gory details

Starting program: /usr/bin/python2.7-dbg /usr/bin/nosetests -s -v -a \!network pandas/tests/test_frame.py:TestDataFrame.test_from_records_sequencelike
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/arm-linux-gnueabi/libthread_db.so.1".

Program received signal SIGILL, Illegal instruction.

Program received signal SIGILL, Illegal instruction.

test_from_records_sequencelike (pandas.tests.test_frame.TestDataFrame) ...
Program received signal SIGSEGV, Segmentation fault.
0xb59b5478 in __pyx_pf_6pandas_3lib_122is_string_array (__pyx_self=0x0, __pyx_v_values=0x1727668) at pandas/lib.c:32348
32348         __Pyx_INCREF((PyObject*)__pyx_t_3);

(gdb) bt
#0  0xb59b5478 in __pyx_pf_6pandas_3lib_122is_string_array (__pyx_self=0x0, __pyx_v_values=0x1727668) at pandas/lib.c:32348
#1  0xb59b4248 in __pyx_pw_6pandas_3lib_123is_string_array (__pyx_self=0x0, __pyx_v_values=<numpy.ndarray at remote 0x1727668>) at pandas/lib.c:32136
#2  0x0009e498 in PyCFunction_Call (func=<built-in function is_string_array>, arg=(<numpy.ndarray at remote 0x1727668>,), kw=0x0) at ../Objects/methodobject.c:101
#3  0x0002e178 in PyObject_Call (func=<built-in function is_string_array>, arg=(<numpy.ndarray at remote 0x1727668>,), kw=0x0) at ../Objects/abstract.c:2529
#4  0xb59abe48 in __pyx_pf_6pandas_3lib_108infer_dtype (__pyx_self=0x0, __pyx_v__values=<numpy.ndarray at remote 0x1727668>) at pandas/lib.c:30465
#5  0xb59a81d8 in __pyx_pw_6pandas_3lib_109infer_dtype (__pyx_self=0x0, __pyx_v__values=<numpy.ndarray at remote 0x1727668>) at pandas/lib.c:29761
#6  0x00152aa4 in call_function (pp_stack=0xbeffaa74, oparg=1) at ../Python/ceval.c:4009
#7  0x0014d524 in PyEval_EvalFrameEx (
    f=Frame 0x12bf850, for file /home/yoh/pandas/pandas-0.12.0/pandas/core/common.py, line 1220, in _possibly_cast_to_datetime (value=<numpy.ndarray at remote 0x1727668>, dtype=None, coerce=False, v=<numpy.ndarray at remote 0x1727668>), throwflag=0) at ../Python/ceval.c:2666

python backtrace

(gdb) py-bt
#7 Frame 0x12bf850, for file /home/yoh/pandas/pandas-0.12.0/pandas/core/common.py, line 1220, in _possibly_cast_to_datetime (value=<numpy.ndarray at remote 0x1727668>, dtype=None, coerce=False, v=<numpy.ndarray at remote 0x1727668>)
    inferred_type = lib.infer_dtype(v)
#11 Frame 0x12a37b0, for file /home/yoh/pandas/pandas-0.12.0/pandas/core/series.py, line 3318, in _try_cast (arr=<numpy.ndarray at remote 0x1727668>, take_fast_path=True)
    arr = com._possibly_cast_to_datetime(arr, dtype)
#15 Frame 0x115d810, for file /home/yoh/pandas/pandas-0.12.0/pandas/core/series.py, line 3349, in _sanitize_array (data=<numpy.ndarray at remote 0x1727668>, index=<Int64Index(name=None) at remote 0x17289d8>, dtype=None, copy=False, raise_cast_failure=False, _try_cast=<function at remote 0x1728a30>, subarr=<numpy.ndarray at remote 0x1727668>)
    subarr = _try_cast(data, True)
#19 Frame 0x17579c0, for file /home/yoh/pandas/pandas-0.12.0/pandas/core/frame.py, line 5936, in _homogenize (data=[<numpy.ndarray at remote 0x1723ea8>, <numpy.ndarray at remote 0x1723f68>, <numpy.ndarray at remote 0x17273e8>, <numpy.ndarray at remote 0x1727668>, <numpy.ndarray at remote 0x17271a8>, <numpy.ndarray at remote 0x17274e8>, <numpy.ndarray at remote 0x1727228>, <numpy.ndarray at remote 0x17270e8>], index=<Int64Index(name=None) at remote 0x17289d8>, dtype=None, _sanitize_array=<function at remote 0x10f1b90>, oindex=None, homogenized=[<numpy.ndarray at remote 0x1723ea8>, <numpy.ndarray at remote 0x1723f68>, <numpy.ndarray at remote 0x17273e8>], v=<numpy.ndarray at remote 0x1727668>)
    raise_cast_failure=False)
#23 Frame 0x17571e0, for file /home/yoh/pandas/pandas-0.12.0/pandas/core/frame.py, line 5675, in _arrays_to_mgr (arrays=[<numpy.ndarray at remote 0x1723ea8>, <numpy.ndarray at remote 0x1723f68>, <numpy.ndarray at remote 0x17273e8>, <numpy.ndarray at remote 0x1727668>, <numpy.ndarray at remote 0x17271a8>, <numpy.ndarray at remote 0x17274e8>, <numpy.ndarray at remote 0x1727228>, <numpy.ndarray at remote 0x17270e8>], arr_names=<Index(name=None) at remote 0x17286c0>, index=<Int64Index(name=None) at remote 0x17289d8>, columns=<...>, dtype=None)
    arrays = _homogenize(arrays, index, dtype)
#27 Frame 0x17ce8a0, for file /home/yoh/pandas/pandas-0.12.0/pandas/core/frame.py, line 1124, in from_records (cls=<type at remote 0x129f680>, data=<recarray at remote 0x165dc40>, index=None, exclude=set([]), columns=<Index(name=None) at remote 0x17286c0>, coerce_float=False, nrows=None, arr_columns=<...>, arrays=[<numpy.ndarray at remote 0x1723ea8>, <numpy.ndarray at remote 0x1723f68>, <numpy.ndarray at remote 0x17273e8>, <numpy.ndarray at remote 0x1727668>, <numpy.ndarray at remote 0x17271a8>, <numpy.ndarray at remote 0x17274e8>, <numpy.ndarray at remote 0x1727228>, <numpy.ndarray at remote 0x17270e8>], result_index=None)
    columns)

and here what I think was original/generated code

(gdb) bt 1
#0  0xb59b5478 in __pyx_pf_6pandas_3lib_122is_string_array (__pyx_self=0x0, __pyx_v_values=0x1727668) at pandas/lib.c:32348
(More stack frames follow...)
(gdb) l 32335
32330         /* "pandas/src/inference.pyx":230
32331    * 
32332    *         for i in range(n):
32333    *             if not PyString_Check(objbuf[i]):             # <<<<<<<<<<<<<<
32334    *                 return False
32335    *         return True
32336    */
32337         __pyx_t_13 = __pyx_v_i;
32338         __pyx_t_8 = -1;
32339         if (__pyx_t_13 < 0) {
(gdb) 
32340           __pyx_t_13 += __pyx_pybuffernd_objbuf.diminfo[0].shape;
32341           if (unlikely(__pyx_t_13 < 0)) __pyx_t_8 = 0;
32342         } else if (unlikely(__pyx_t_13 >= __pyx_pybuffernd_objbuf.diminfo[0].shape)) __pyx_t_8 = 0;
32343         if (unlikely(__pyx_t_8 != -1)) {
32344           __Pyx_RaiseBufferIndexError(__pyx_t_8);
32345           {__pyx_filename = __pyx_f[1]; __pyx_lineno = 230; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
32346         }
32347         __pyx_t_3 = (PyObject *) *__Pyx_BufPtrStrided1d(PyObject **, __pyx_pybuffernd_objbuf.rcbuffer->pybuffer.buf, __pyx_t_13, __pyx_pybuffernd_objbuf.diminfo[0].strides);
32348         __Pyx_INCREF((PyObject*)__pyx_t_3);
32349         __pyx_t_7 = ((!(PyString_Check(__pyx_t_3) != 0)) != 0);

any obvious clues? ;)

@jreback
Copy link
Contributor

jreback commented Oct 3, 2013

@yarikoptic this still occurring?

@yarikoptic
Copy link
Contributor Author

I would/will need to check... recent build of 0.12 still had it though: test_from_records_sequencelike (pandas.tests.test_frame.TestDataFrame) ... Segmentation fault

@yarikoptic
Copy link
Contributor Author

unfortunately current master (v0.12.0-761-gaa9d9b9) is still susceptible:

test_from_records_sequencelike (pandas.tests.test_frame.TestDataFrame) ...
Program received signal SIGSEGV, Segmentation fault.
0xb5a85898 in __pyx_pf_6pandas_3lib_118is_string_array (__pyx_self=0x0, __pyx_v_values=0x1671068) at pandas/lib.c:33183
33183         __Pyx_INCREF((PyObject*)__pyx_t_3);
(gdb) bt 10
#0  0xb5a85898 in __pyx_pf_6pandas_3lib_118is_string_array (__pyx_self=0x0, __pyx_v_values=0x1671068) at pandas/lib.c:33183
#1  0xb5a84664 in __pyx_pw_6pandas_3lib_119is_string_array (__pyx_self=0x0, __pyx_v_values=<numpy.ndarray at remote 0x1671068>) at pandas/lib.c:32971
#2  0x0009e498 in PyCFunction_Call (func=<built-in function is_string_array>, arg=(<numpy.ndarray at remote 0x1671068>,), kw=0x0) at ../Objects/methodobject.c:101
#3  0x0002e178 in PyObject_Call (func=<built-in function is_string_array>, arg=(<numpy.ndarray at remote 0x1671068>,), kw=0x0) at ../Objects/abstract.c:2529
#4  0xb5a7c258 in __pyx_pf_6pandas_3lib_104infer_dtype (__pyx_self=0x0, __pyx_v__values=<numpy.ndarray at remote 0x1671068>) at pandas/lib.c:31301
#5  0xb5a785dc in __pyx_pw_6pandas_3lib_105infer_dtype (__pyx_self=0x0, __pyx_v__values=<numpy.ndarray at remote 0x1671068>) at pandas/lib.c:30599
#6  0x00152acc in call_function (pp_stack=0xbeffaa84, oparg=1) at ../Python/ceval.c:4009
#7  0x0014d54c in PyEval_EvalFrameEx (
    f=Frame 0x10b1e40, for file /home/yoh/pandas/pandas/pandas/core/common.py, line 1423, in _possibly_cast_to_datetime (value=<numpy.ndarray at remote 0x1671068>, dtype=None, coerce=False, v=<numpy.ndarray at remote 0x1671068>), throwflag=0) at ../Python/ceval.c:2666
#8  0x0014fdc4 in PyEval_EvalCodeEx (co=0xc30da8, 
    globals={'_mut_exclusive': <function at remote 0xc92878>, '_values_from_object': <function at remote 0xc925b8>, '_any_none': <function at remote 0xc928d0>, '_to_pydatetime': <function at remote 0xc93be8>, 'LooseVersion': <classobj at remote 0xb05b78>, '_pad_2d_datetime': <function at remote 0xc921f0>, '_where_compat': <function at remote 0xc93c40>, '_take_nd_generic': <function at remote 0xc8f7c8>, 'intersection': <function at remote 0xc92ea8>, '_pprint_dict': <function at remote 0xc93ea8>, '_maybe_promote': <function at remote 0xc8fea8>, '_INT64_DTYPE': <numpy.dtype at remote 0xb6744768>, 'UTF8Recoder': <classobj at remote 0xc8e088>, 'interpolate_2d': <function at remote 0xc92458>, '_maybe_upcast': <function at remote 0xc8ff58>, 'collections': <module at remote 0xb6c69460>, '_default_index': <function at remote 0xc927c8>, 'rands': <function at remote 0xc92a30>, 'save': <function at remote 0xc95090>, 'BytesIO': <classobj at remote 0xb6b84628>, '_ensure_object': <built-in function ensure_object>, '_lcd_dtypes': <funct...(truncated), locals=0x0, args=0x11c229c, argcount=2, kws=0x11c22a4, 
    kwcount=0, defs=0xc91d6c, defcount=1, closure=0x0) at ../Python/ceval.c:3253
#9  0x00153390 in fast_function (func=<function at remote 0xc92718>, pp_stack=0xbeffad54, n=2, na=2, nk=0) at ../Python/ceval.c:4117
(More stack frames follow...)

and that is the full function code

32960   /* Python wrapper */
32961   static PyObject *__pyx_pw_6pandas_3lib_119is_string_array(PyObject *__pyx_self, PyObject *__pyx_v_values); /*proto*/
32962   static PyMethodDef __pyx_mdef_6pandas_3lib_119is_string_array = {__Pyx_NAMESTR("is_string_array"), (PyCFunction)__pyx_pw_6pandas_3lib_119is_string_array, METH_O, __Pyx_DOCSTR(0)};
32963   static PyObject *__pyx_pw_6pandas_3lib_119is_string_array(PyObject *__pyx_self, PyObject *__pyx_v_values) {
32964     CYTHON_UNUSED int __pyx_lineno = 0;
(gdb) 
32965     CYTHON_UNUSED const char *__pyx_filename = NULL;
32966     CYTHON_UNUSED int __pyx_clineno = 0;
32967     PyObject *__pyx_r = 0;
32968     __Pyx_RefNannyDeclarations
32969     __Pyx_RefNannySetupContext("is_string_array (wrapper)", 0);
32970     if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_values), __pyx_ptype_5numpy_ndarray, 1, "values", 0))) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
32971     __pyx_r = __pyx_pf_6pandas_3lib_118is_string_array(__pyx_self, ((PyArrayObject *)__pyx_v_values));
32972     goto __pyx_L0;
32973     __pyx_L1_error:;
32974     __pyx_r = NULL;

in python it is at

(gdb) py-bt
#7 Frame 0x10b1e40, for file /home/yoh/pandas/pandas/pandas/core/common.py, line 1423, in _possibly_cast_to_datetime (value=<numpy.ndarray at remote 0x1671068>, dtype=None, coerce=False, v=<numpy.ndarray at remote 0x1671068>)
    inferred_type = lib.infer_dtype(v)
#11 Frame 0x11c2140, for file /home/yoh/pandas/pandas/pandas/core/series.py, line 2461, in _try_cast (arr=<numpy.ndarray at remote 0x1671068>, take_fast_path=True)
    arr = _possibly_cast_to_datetime(arr, dtype)

seems to happen when v passed to 'infer_dtype' is array(['foo', 'foo', 'foo', 'foo', 'foo', 'foo'], dtype=object) ... and I do not see anything obviously wrong code there in pandas/src/inference.pyx thus tending to blame cython (0.19.1+git34-gac3e3a2-1) or even python... ? ;)

@yarikoptic
Copy link
Contributor Author

weird thing (as commended in 5150) -- it doesn't segfault on my home armel boxy ... versions of everything are identical if I see it right... only few choices of packages are different... weird...

@jreback
Copy link
Contributor

jreback commented Oct 8, 2013

do you and/or the other armel have a locale set? (in ci/print_version.py)....?
could be a unicode passed to cython expecting string

@yarikoptic
Copy link
Contributor Author

ah -- interesting idea!

on both boxes:

locale
LANG=
LANGUAGE=
LC_CTYPE="POSIX"
LC_NUMERIC="POSIX"
LC_TIME="POSIX"
LC_COLLATE="POSIX"
LC_MONETARY="POSIX"
LC_MESSAGES="POSIX"
LC_PAPER="POSIX"
LC_NAME="POSIX"
LC_ADDRESS="POSIX"
LC_TELEPHONE="POSIX"
LC_MEASUREMENT="POSIX"
LC_IDENTIFICATION="POSIX"
LC_ALL=

and print_versions report

byteorder: little
LC_ALL: None
LANG: None

I guess I should just disable that test on armel for now and be done
with it!

On Tue, 08 Oct 2013, jreback wrote:

do you and/or the other armel have a locale set? (in
ci/print_version.py)....?
could be a unicode passed to cython expecting string

Yaroslav O. Halchenko, Ph.D.
http://neuro.debian.net http://www.pymvpa.org http://www.fail2ban.org
Senior Research Associate, Psychological and Brain Sciences Dept.
Dartmouth College, 419 Moore Hall, Hinman Box 6207, Hanover, NH 03755
Phone: +1 (603) 646-9834 Fax: +1 (603) 646-1419
WWW: http://www.linkedin.com/in/yarik

@jreback
Copy link
Contributor

jreback commented Oct 8, 2013

gr8.....the locale thing is causing all kinds of weird havoc....I think most have been nailed....

@jreback
Copy link
Contributor

jreback commented Oct 11, 2013

closing as known failure of locale issues on armel

@jreback jreback closed this as completed Oct 11, 2013
@jtratner
Copy link
Contributor

Adding a skip test?

@jreback
Copy link
Contributor

jreback commented Oct 11, 2013

I think @yarikoptic is skipping locally (on armel only)

@jtratner
Copy link
Contributor

Wouldn't you want it to pass on armel without tweaks?

On Fri, Oct 11, 2013 at 9:06 AM, jreback notifications@github.com wrote:

I think @yarikoptic https://github.com/yarikoptic is skipping locally
(on armel only)


Reply to this email directly or view it on GitHubhttps://github.com//issues/4473#issuecomment-26135331
.

@jreback
Copy link
Contributor

jreback commented Oct 11, 2013

in an ideal world sure, but its a locale issue and don't have any easy way to debug. If @yarikoptic wants to great.

@jreback
Copy link
Contributor

jreback commented Oct 11, 2013

ok....reopen so can add a knownfail test

@jreback jreback reopened this Oct 11, 2013
@jreback
Copy link
Contributor

jreback commented Oct 11, 2013

@yarikoptic can you put up ci/print_versions.py on the failing box? we'll just skip if that kind is detected

@yarikoptic
Copy link
Contributor Author

I do not think it would be possible to differentiate easily between box which
fails and which not, or at least that is not within the
ci/print_versions.py, unless just checking if that OS is
'Linux._Debian._armv5tel'.

So here they are

Failing:
(sid_armel-dchroot)yoh@abel:~/pandas/pandas-armel/pandas$ python ci/print_versions.py

INSTALLED VERSIONS

Python: 2.7.5.final.0
OS: Linux 3.2.0-4-mv78xx0 #1 Debian 3.2.46-1+deb7u1 armv5tel
byteorder: little
LC_ALL: None
LANG: None

pandas: Not installed
Cython: 0.19.1
Numpy: 1.7.1
Scipy: 0.12.0
statsmodels: 0.4.2
patsy: Not installed
scikits.timeseries: Not installed
dateutil: 1.5
pytz: 2012c
bottleneck: Not installed
PyTables: 3.0.0
numexpr: 2.2.2
matplotlib: 1.3.0
openpyxl: 1.5.8
xlrd: 0.9.2
xlwt: 0.7.4
xlsxwriter: Not installed
sqlalchemy: Not installed
lxml: Not installed
bs4: 4.2.1
html5lib: 0.95-dev

Not failing (it is also a Debian installation but in a chroot on top of
custom buildroot build):

$> python ci/print_versions.py

INSTALLED VERSIONS

Python: 2.7.5.final.0
OS: Linux 2.6.34 #1 Sat Aug 31 00:59:49 EDT 2013 armv7l
byteorder: little
LC_ALL: None
LANG: None

Cython: 0.19.1
Numpy: 1.7.1
Scipy: 0.12.0
statsmodels: 0.4.2
patsy: Not installed
scikits.timeseries: Not installed
dateutil: 1.5
pytz: 2012c
bottleneck: Not installed
PyTables: 3.0.0
numexpr: 2.2.2
matplotlib: 1.3.0
openpyxl: 1.5.8
xlrd: 0.9.2
xlwt: 0.7.4
sqlalchemy: Not installed
lxml: 3.2.0
bs4: 4.2.1
html5lib: 0.95-dev

On Fri, 11 Oct 2013, jreback wrote:

[1]@yarikoptic can you put up ci/print_versions.py on the failing box?
we'll just skip if that kind is detected


Reply to this email directly or [2]view it on GitHub.

References

Visible links

  1. https://github.com/yarikoptic
  2. TestDataFrame.test_from_records_sequencelike: segfault on armel #4473 (comment)

Yaroslav O. Halchenko, Ph.D.
http://neuro.debian.net http://www.pymvpa.org http://www.fail2ban.org
Senior Research Associate, Psychological and Brain Sciences Dept.
Dartmouth College, 419 Moore Hall, Hinman Box 6207, Hanover, NH 03755
Phone: +1 (603) 646-9834 Fax: +1 (603) 646-1419
WWW: http://www.linkedin.com/in/yarik

@jtratner
Copy link
Contributor

How about:

if armv in <however we define os>:
    raise KnownFailure("Locale detection not supported on armel.")

And then we leave an open issue if somebody wants to attempt to fix.
I do not think it would be possible to differentiate easily between box
which
fails and which not, or at least that is not within the
ci/print_versions.py, unless just checking if that OS is
'Linux._Debian._armv5tel'.

So here they are

Failing:
(sid_armel-dchroot)yoh@abel:~/pandas/pandas-armel/pandas$ python
ci/print_versions.py

INSTALLED VERSIONS

Python: 2.7.5.final.0
OS: Linux 3.2.0-4-mv78xx0 #1 Debian 3.2.46-1+deb7u1 armv5tel
byteorder: little
LC_ALL: None
LANG: None

pandas: Not installed
Cython: 0.19.1
Numpy: 1.7.1
Scipy: 0.12.0
statsmodels: 0.4.2
patsy: Not installed
scikits.timeseries: Not installed
dateutil: 1.5
pytz: 2012c
bottleneck: Not installed
PyTables: 3.0.0
numexpr: 2.2.2
matplotlib: 1.3.0
openpyxl: 1.5.8
xlrd: 0.9.2
xlwt: 0.7.4
xlsxwriter: Not installed
sqlalchemy: Not installed
lxml: Not installed
bs4: 4.2.1
html5lib: 0.95-dev

Not failing (it is also a Debian installation but in a chroot on top of
custom buildroot build):

$> python ci/print_versions.py

INSTALLED VERSIONS

Python: 2.7.5.final.0
OS: Linux 2.6.34 #1 Sat Aug 31 00:59:49 EDT 2013 armv7l
byteorder: little
LC_ALL: None
LANG: None

Cython: 0.19.1
Numpy: 1.7.1
Scipy: 0.12.0
statsmodels: 0.4.2
patsy: Not installed
scikits.timeseries: Not installed
dateutil: 1.5
pytz: 2012c
bottleneck: Not installed
PyTables: 3.0.0
numexpr: 2.2.2
matplotlib: 1.3.0
openpyxl: 1.5.8
xlrd: 0.9.2
xlwt: 0.7.4
sqlalchemy: Not installed
lxml: 3.2.0
bs4: 4.2.1
html5lib: 0.95-dev

On Fri, 11 Oct 2013, jreback wrote:

[1]@yarikoptic can you put up ci/print_versions.py on the failing box?
we'll just skip if that kind is detected


Reply to this email directly or [2]view it on GitHub.

References

Visible links

  1. https://github.com/yarikoptic
  2. TestDataFrame.test_from_records_sequencelike: segfault on armel #4473 (comment)

Yaroslav O. Halchenko, Ph.D.
http://neuro.debian.net http://www.pymvpa.org http://www.fail2ban.org
Senior Research Associate, Psychological and Brain Sciences Dept.
Dartmouth College, 419 Moore Hall, Hinman Box 6207, Hanover, NH 03755
Phone: +1 (603) 646-9834 Fax: +1 (603) 646-1419
WWW: http://www.linkedin.com/in/yarik


Reply to this email directly or view it on
GitHubhttps://github.com//issues/4473#issuecomment-26160795
.

@jreback
Copy link
Contributor

jreback commented Oct 16, 2013

@jtratner you are putting something in for this? or just have @yarikoptic skip?

@jreback
Copy link
Contributor

jreback commented Oct 21, 2013

@yarikoptic pls put a skip on this; too complicated to debug/skip ATM

@yarikoptic
Copy link
Contributor Author

for now I even committed a sin -- just built and uploaded to armel without testing.... I will enable a skip for this test on armel in the future upload.

@jreback
Copy link
Contributor

jreback commented Oct 21, 2013

hahah...thankxs

@jreback jreback closed this as completed Oct 21, 2013
@yarikoptic
Copy link
Contributor Author

ho ho -- I was not expecting it to be closed though since the issue was not fixed per se ;)

@jreback
Copy link
Contributor

jreback commented Oct 21, 2013

ok...i'll reopen and assign to 0.14......

@jreback jreback reopened this Oct 21, 2013
@yarikoptic
Copy link
Contributor Author

eh -- and since I have sinned last time, now I am paying the price (fails again) so would need finally to add some skip... heh

yarikoptic added a commit to neurodebian/pandas that referenced this issue Jan 5, 2014
@jreback
Copy link
Contributor

jreback commented Jan 21, 2014

looks like @yarikoptic patched on debian side

@jreback jreback closed this as completed Jan 21, 2014
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Testing pandas testing functions or related to the test suite
Projects
None yet
Development

No branches or pull requests

3 participants