Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
Following codes will re-produce my issue:
import numpy as np
import pandas as pd
# generate a bunch sample data for later use
n = 5000000
s_samples = [f"s_{i}" for i in range(1, 101)]
i_samples = [f"i_{i}" for i in range(1, 201)]
bool_samples = [True, False]
ssamples = np.random.choice(s_samples, n)
isamples = np.random.choice(i_samples, n)
d_values = np.random.randn(3, n)
b_values = np.random.choice(bool_samples, n)
df = pd.DataFrame(
dict(s=ssamples, i=isamples, v1=d_values[0], v2=d_values[1], v3=d_values[2], f1=b_values, f2=b_values)
)
df.to_csv("sample.csv", index=None)
# read in data with different engine
df_new = pd.read_csv("sample.csv", engine="pyarrow", dtype_backend="pyarrow")
df_old = pd.read_csv("sample.csv")
# do the bechmark
%timeit df_new.groupby("s")["v1"].sum()
# >> 660 ms ± 20.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit df_old.groupby("s")["v1"].sum()
# >> 311 ms ± 13.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
The new engine is 2x slower than the old engine.
Installed Versions
INSTALLED VERSIONS
commit : c2a7f1a
python : 3.9.16.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19045
machine : AMD64
processor : AMD64 Family 23 Model 1 Stepping 1, AuthenticAMD
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Chinese (Simplified)_China.936
pandas : 2.0.0rc1
numpy : 1.23.5
pytz : 2022.7
dateutil : 2.8.2
setuptools : 65.6.3
pip : 23.0.1
Cython : 0.29.33
pytest : 7.1.2
hypothesis : None
sphinx : 5.0.2
blosc : None
feather : None
xlsxwriter : 3.0.3
lxml.etree : 4.9.1
html5lib : None
pymysql : 1.0.2
psycopg2 : 2.9.3
jinja2 : 3.1.2
IPython : 8.10.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : 1.3.5
brotli :
fastparquet : None
fsspec : 2022.11.0
gcsfs : None
matplotlib : 3.7.1
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.0
snappy :
sqlalchemy : 1.4.39
tables : 3.7.0
tabulate : 0.8.10
xarray : 2022.11.0
xlrd : 2.0.1
zstandard : 0.19.0
tzdata : None
qtpy : 2.2.0
pyqt5 : None
Prior Performance
No response