Skip to content

BUG: Casting to float32 + groupby leads to different results starting from v1.5.0 #53663

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
2 of 3 tasks
MrYugs opened this issue Jun 14, 2023 · 2 comments
Closed
2 of 3 tasks

Comments

@MrYugs
Copy link

MrYugs commented Jun 14, 2023

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

df = pd.read_csv("data.csv")
mean_0 = df["foo"].astype("float32").groupby(df["week"]).mean()
mean_1 = df["foo"].groupby(df["week"]).mean()
mean_2 = df["foo"].groupby(df["week"]).mean().astype("float32")
print("%.13f" % mean_0["W10"])
print("%.13f" % mean_1["W10"])
print("%.13f" % mean_2["W10"])

Issue Description

I have different results when combining casting to float32 and groupby + mean aggregation depending on the version of pandas being used. I first identified this change with v2.0.1 then tracked it down to the v1.5.0.

The mean_0 from the example is the only one that changes when testing with v1.4.4 and v1.5.0:

Mean versions <= Pandas 1.4.4 versions >= Pandas 1.5.0
mean_0 288.0459899902344 288.0460205078125
mean_1 288.0459992041385 288.0459992041385
mean_2 288.0459899902344 288.0459899902344

Results seem to differ depending on when the casting is done. I would like to understand why (maybe the loc/iloc change introduced in v1.5.0?).

Here is the input file to reproduce the behavior: data.csv

Expected Behavior

I expect the results to be the same or at least understand the origin of the difference.

Installed Versions

Pandas 1.4 environment:

INSTALLED VERSIONS ------------------ commit : ca60aab python : 3.9.16.final.0 python-bits : 64 OS : Linux OS-release : 5.19.0-42-generic Version : #43~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 21 16:51:08 UTC 2 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8

pandas : 1.4.4
numpy : 1.22.4
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.8.0
pip : 23.1.2
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
markupsafe : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 10.0.1
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None

Pandas 1.5 environment:

INSTALLED VERSIONS ------------------ commit : 87cfe4e python : 3.9.16.final.0 python-bits : 64 OS : Linux OS-release : 5.19.0-42-generic Version : #43~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Apr 21 16:51:08 UTC 2 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8

pandas : 1.5.0
numpy : 1.22.4
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.7.2
pip : 23.1.2
Cython : 0.29.30
pytest : 7.1.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : 1.0.2
psycopg2 : None
jinja2 : 3.1.2
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2022.5.0
gcsfs : 2022.5.0
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 10.0.1
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.8.1
snappy : None
sqlalchemy : 1.4.36
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : 2023.3

@MrYugs MrYugs added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Jun 14, 2023
@rhshadrach
Copy link
Member

I would recommend running a git bisect to determine what PR lead to this change.

@rhshadrach
Copy link
Member

Closing for now. If there is an issue with the numerical accuracy identified, happy to reopen.

@rhshadrach rhshadrach removed the Needs Triage Issue that has not been reviewed by a pandas team member label Jan 14, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants