-
-
Couldn't load subscription status.
- Fork 19.2k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import datetime
import pandas as pd
tz = 'America/Santiago'
start_date = datetime.datetime(2018, 8, 10, 0, 0, 0)
end_date = datetime.datetime(2018, 8, 14, 23, 0, 0)
freq = 'H'
times = pd.date_range(start=start_date, end=end_date, freq=freq)
times = times.tz_localize(tz=tz, ambiguous='infer',
nonexistent='shift_forward')
print(pd.infer_freq(times[:10]))
pd.infer_freq(times)
print(pd.infer_freq(times[:10]))Issue Description
Initially, infer_freq on the first 10 items of the index returns H, after attempting it on the full index, it returns None on the first 10 items of the index. Confirmed expected behavior in version 2.0.3.
Expected Behavior
Return H in both instances of pd.infer_freq(times[:10]) in the example.
Installed Versions
INSTALLED VERSIONS
commit : a60ad39
python : 3.10.13.final.0
python-bits : 64
OS : Darwin
OS-release : 21.6.0
Version : Darwin Kernel Version 21.6.0: Wed Oct 4 23:56:02 PDT 2023; root:xnu-8020.240.18.704.15~1/RELEASE_ARM64_T6000
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.1.2
numpy : 1.26.0
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.3
Cython : None
pytest : 7.4.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.15.0
pandas_datareader : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.8.0
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.11.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : 2.2.0
pyqt5 : None