Closed
Description
related to this: #6992
These are broken
In [70]: df.set_index('A').resample('M',how='count')
ValueError: month must be in 1..12
In [73]: df.groupby(pd.Grouper(freq='MS',key='A')).count()
ValueError: month must be in 1..12
Separately, this should not also return the A column
In [74]: df.dropna(how='any',subset=['A']).groupby(pd.Grouper(key='A',freq='M')).count()
Out[74]:
A B
A
2014-10-31 3 3
2014-11-30 2 2
2014-12-31 1 1
In [57]: data
Out[57]:
0 2014-10-01
1 2014-10-01
2 2014-10-31
3 2014-11-15
4 2014-11-30
5 NaT
6 2014-12-01
dtype: datetime64[ns]
In [58]: df = DataFrame(dict(A = data, B = np.arange(len(data))))
This is a work-around
In [59]: df.dropna(how='any',subset=['A']).set_index('A').resample('M',how='count')
Out[59]:
B
A
2014-10-31 3
2014-11-30 2
2014-12-31 1