Skip to content

CLN: ASV frame_ctor benchmark #18499

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Nov 26, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 29 additions & 41 deletions asv_bench/benchmarks/frame_ctor.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,33 @@
from .pandas_vb_common import *
import numpy as np
import pandas.util.testing as tm
from pandas import DataFrame, Series, MultiIndex, Timestamp, date_range
try:
from pandas.tseries.offsets import *
from pandas.tseries import offsets
except:
from pandas.core.datetools import *


#----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Creation from nested dict

class FromDicts(object):

goal_time = 0.2

def setup(self):
(N, K) = (5000, 50)
np.random.seed(1234)
N, K = 5000, 50
self.index = tm.makeStringIndex(N)
self.columns = tm.makeStringIndex(K)
self.frame = DataFrame(np.random.randn(N, K), index=self.index, columns=self.columns)
try:
self.data = self.frame.to_dict()
except:
self.data = self.frame.toDict()
self.frame = DataFrame(np.random.randn(N, K),
index=self.index,
columns=self.columns)
self.data = self.frame.to_dict()
self.some_dict = list(self.data.values())[0]
self.dict_list = [dict(zip(self.columns, row)) for row in self.frame.values]

self.dict_list = self.frame.to_dict(orient='records')
self.data2 = {i: {j: float(j) for j in range(100)}
for i in range(2000)}


def time_frame_ctor_list_of_dict(self):
DataFrame(self.dict_list)

Expand All @@ -38,38 +39,21 @@ def time_series_ctor_from_dict(self):

def time_frame_ctor_nested_dict_int64(self):
# nested dict, integer indexes, regression described in #621
DataFrame(self.data)
DataFrame(self.data2)


# from a mi-series

class frame_from_series(object):
class FromSeries(object):
goal_time = 0.2

def setup(self):
self.mi = MultiIndex.from_tuples([(x, y) for x in range(100) for y in range(100)])
self.s = Series(randn(10000), index=self.mi)
self.mi = MultiIndex.from_product([range(100), range(100)])
self.s = Series(np.random.randn(10000), index=self.mi)

def time_frame_from_mi_series(self):
DataFrame(self.s)


#----------------------------------------------------------------------
# get_numeric_data

class frame_get_numeric_data(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(randn(10000, 25))
self.df['foo'] = 'bar'
self.df['bar'] = 'baz'
self.df = self.df.consolidate()

def time_frame_get_numeric_data(self):
self.df._get_numeric_data()


# ----------------------------------------------------------------------
# From dict with DatetimeIndex with all offsets

Expand All @@ -84,13 +68,15 @@ def get_period_count(start_date, off):
if (ten_offsets_in_days == 0):
return 1000
else:
return min((9 * ((Timestamp.max - start_date).days // ten_offsets_in_days)), 1000)
periods = 9 * (Timestamp.max - start_date).days // ten_offsets_in_days
return min(periods, 1000)


def get_index_for_offset(off):
start_date = Timestamp('1/1/1900')
return date_range(start_date, periods=min(1000, get_period_count(
start_date, off)), freq=off)
return date_range(start_date,
periods=get_period_count(start_date, off),
freq=off)


all_offsets = offsets.__all__
Expand All @@ -100,21 +86,23 @@ def get_index_for_offset(off):
all_offsets.extend([off + '_1', off + '_2'])


class FrameConstructorDTIndexFromOffsets(object):
class FromDictwithTimestampOffsets(object):

params = [all_offsets, [1, 2]]
param_names = ['offset', 'n_steps']

offset_kwargs = {'WeekOfMonth': {'weekday': 1, 'week': 1},
'LastWeekOfMonth': {'weekday': 1, 'week': 1},
'FY5253': {'startingMonth': 1, 'weekday': 1},
'FY5253Quarter': {'qtr_with_extra_week': 1, 'startingMonth': 1, 'weekday': 1}}
'FY5253Quarter': {'qtr_with_extra_week': 1,
'startingMonth': 1,
'weekday': 1}}

offset_extra_cases = {'FY5253': {'variation': ['nearest', 'last']},
'FY5253Quarter': {'variation': ['nearest', 'last']}}

def setup(self, offset, n_steps):

np.random.seed(1234)
extra = False
if offset.endswith("_", None, -1):
extra = int(offset[-1])
Expand All @@ -127,12 +115,12 @@ def setup(self, offset, n_steps):
if extra:
extras = self.offset_extra_cases[offset]
for extra_arg in extras:
kwargs[extra_arg] = extras[extra_arg][extra -1]
kwargs[extra_arg] = extras[extra_arg][extra - 1]

offset = getattr(offsets, offset)
self.idx = get_index_for_offset(offset(n_steps, **kwargs))
self.df = DataFrame(np.random.randn(len(self.idx), 10), index=self.idx)
self.d = dict(self.df.items())
self.d = self.df.to_dict()

def time_frame_ctor(self, offset, n_steps):
DataFrame(self.d)
14 changes: 14 additions & 0 deletions asv_bench/benchmarks/frame_methods.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,20 @@
from .pandas_vb_common import *
import string

#----------------------------------------------------------------------
# get_numeric_data

class frame_get_numeric_data(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(np.random.randn(10000, 25))
self.df['foo'] = 'bar'
self.df['bar'] = 'baz'
self.df = self.df.consolidate()

def time_frame_get_numeric_data(self):
self.df._get_numeric_data()

#----------------------------------------------------------------------
# lookup
Expand Down