Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DOC: Fix Order of parameters in docstrings #23611

Merged
merged 5 commits into from
Nov 11, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions pandas/core/reshape/pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -407,12 +407,12 @@ def crosstab(index, columns, values=None, rownames=None, colnames=None,
values : array-like, optional
Array of values to aggregate according to the factors.
Requires `aggfunc` be specified.
aggfunc : function, optional
If specified, requires `values` be specified as well
rownames : sequence, default None
If passed, must match number of row arrays passed
colnames : sequence, default None
If passed, must match number of column arrays passed
aggfunc : function, optional
If specified, requires `values` be specified as well
margins : boolean, default False
Add row/column margins (subtotals)
margins_name : string, default 'All'
Expand Down
35 changes: 17 additions & 18 deletions pandas/core/window.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ def _gotitem(self, key, ndim, subset=None):

Parameters
----------
key : string / list of selections
key : str / list of selections
ndim : 1,2
requested ndim of result
subset : object, default None
Expand Down Expand Up @@ -464,15 +464,16 @@ class Window(_Window):
(otherwise result is NA). For a window that is specified by an offset,
`min_periods` will default to 1. Otherwise, `min_periods` will default
to the size of the window.
center : boolean, default False
center : bool, default False
Set the labels at the center of the window.
win_type : string, default None
win_type : str, default None
Provide a window type. If ``None``, all points are evenly weighted.
See the notes below for further information.
on : string, optional
on : str, optional
For a DataFrame, column on which to calculate
the rolling window, rather than the index
closed : string, default None
axis : int or str, default 0
closed : str, default None
Make the interval closed on the 'right', 'left', 'both' or
'neither' endpoints.
For offset-based windows, it defaults to 'right'.
Expand All @@ -481,8 +482,6 @@ class Window(_Window):

.. versionadded:: 0.20.0

axis : int or string, default 0

Returns
-------
a Window or Rolling sub-classed for the particular operation
Expand Down Expand Up @@ -661,7 +660,7 @@ def _apply_window(self, mean=True, **kwargs):

Parameters
----------
mean : boolean, default True
mean : bool, default True
If True computes weighted mean, else weighted sum

Returns
Expand Down Expand Up @@ -819,11 +818,11 @@ def _apply(self, func, name=None, window=None, center=None,

Parameters
----------
func : string/callable to apply
name : string, optional
func : str/callable to apply
name : str, optional
name of this function
window : int/array, default to _get_window()
center : boolean, default to self.center
center : bool, default to self.center
check_minp : function, default to _use_window

Returns
Expand Down Expand Up @@ -1816,9 +1815,9 @@ class Expanding(_Rolling_and_Expanding):
min_periods : int, default 1
Minimum number of observations in window required to have a value
(otherwise result is NA).
center : boolean, default False
center : bool, default False
Set the labels at the center of the window.
axis : int or string, default 0
axis : int or str, default 0

Returns
-------
Expand Down Expand Up @@ -2062,7 +2061,7 @@ def _constructor(self):

Parameters
----------
bias : boolean, default False
bias : bool, default False
Use a standard estimation bias correction
"""

Expand All @@ -2079,7 +2078,7 @@ def _constructor(self):
will be a MultiIndex DataFrame in the case of DataFrame inputs.
In the case of missing elements, only complete pairwise observations will
be used.
bias : boolean, default False
bias : bool, default False
Use a standard estimation bias correction
"""

Expand Down Expand Up @@ -2110,10 +2109,10 @@ class EWM(_Rolling):
min_periods : int, default 0
Minimum number of observations in window required to have a value
(otherwise result is NA).
adjust : boolean, default True
adjust : bool, default True
Divide by decaying adjustment factor in beginning periods to account
for imbalance in relative weightings (viewing EWMA as a moving average)
ignore_na : boolean, default False
ignore_na : bool, default False
Ignore missing values when calculating weights;
specify True to reproduce pre-0.15.0 behavior

Expand Down Expand Up @@ -2242,7 +2241,7 @@ def _apply(self, func, **kwargs):

Parameters
----------
func : string/callable to apply
func : str/callable to apply

Returns
-------
Expand Down
2 changes: 1 addition & 1 deletion pandas/io/json/normalize.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,10 +110,10 @@ def json_normalize(data, record_path=None, meta=None,
assumed to be an array of records
meta : list of paths (string or list of strings), default None
Fields to use as metadata for each record in resulting table
meta_prefix : string, default None
record_prefix : string, default None
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
path to records is ['foo', 'bar']
meta_prefix : string, default None
errors : {'raise', 'ignore'}, default 'raise'

* 'ignore' : will ignore KeyError if keys listed in meta are not
Expand Down
4 changes: 2 additions & 2 deletions pandas/tseries/offsets.py
Original file line number Diff line number Diff line change
Expand Up @@ -807,7 +807,6 @@ class CustomBusinessDay(_CustomMixin, BusinessDay):
Parameters
----------
n : int, default 1
offset : timedelta, default timedelta(0)
normalize : bool, default False
Normalize start/end dates to midnight before generating date range
weekmask : str, Default 'Mon Tue Wed Thu Fri'
Expand All @@ -816,6 +815,7 @@ class CustomBusinessDay(_CustomMixin, BusinessDay):
list/array of dates to exclude from the set of valid business days,
passed to ``numpy.busdaycalendar``
calendar : pd.HolidayCalendar or np.busdaycalendar
offset : timedelta, default timedelta(0)
"""
_prefix = 'C'
_attributes = frozenset(['n', 'normalize',
Expand Down Expand Up @@ -958,7 +958,6 @@ class _CustomBusinessMonth(_CustomMixin, BusinessMixin, MonthOffset):
Parameters
----------
n : int, default 1
offset : timedelta, default timedelta(0)
normalize : bool, default False
Normalize start/end dates to midnight before generating date range
weekmask : str, Default 'Mon Tue Wed Thu Fri'
Expand All @@ -967,6 +966,7 @@ class _CustomBusinessMonth(_CustomMixin, BusinessMixin, MonthOffset):
list/array of dates to exclude from the set of valid business days,
passed to ``numpy.busdaycalendar``
calendar : pd.HolidayCalendar or np.busdaycalendar
offset : timedelta, default timedelta(0)
"""
_attributes = frozenset(['n', 'normalize',
'weekmask', 'holidays', 'calendar', 'offset'])
Expand Down
8 changes: 4 additions & 4 deletions pandas/util/testing.py
Original file line number Diff line number Diff line change
Expand Up @@ -1242,18 +1242,18 @@ def assert_series_equal(left, right, check_dtype=True,
check_less_precise : bool or int, default False
Specify comparison precision. Only used when check_exact is False.
5 digits (False) or 3 digits (True) after decimal points are compared.
If int, then specify the digits to compare
check_exact : bool, default False
Whether to compare number exactly.
If int, then specify the digits to compare.
check_names : bool, default True
Whether to check the Series and Index names attribute.
check_exact : bool, default False
Whether to compare number exactly.
check_datetimelike_compat : bool, default False
Compare datetime-like which is comparable ignoring dtype.
check_categorical : bool, default True
Whether to compare internal Categorical exactly.
obj : str, default 'Series'
Specify object name being compared, internally used to show appropriate
assertion message
assertion message.
"""
__tracebackhide__ = True

Expand Down