Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: pd.factorize should not upconvert unique values unnecessarily #41132

Merged
merged 4 commits into from
Apr 26, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.3.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -705,6 +705,7 @@ Conversion
- Bug in :class:`DataFrame` failing to raise ``TypeError`` when constructing from a ``frozenset`` (:issue:`40163`)
- Bug in :class:`Index` construction silently ignoring a passed ``dtype`` when the data cannot be cast to that dtype (:issue:`21311`)
- Bug in :meth:`StringArray.astype` falling back to numpy and raising when converting to ``dtype='categorical'`` (:issue:`40450`)
- Bug in :func:`factorize` where, when given an array with a numeric numpy dtype lower than int64, uint64 and float64, the unique values did not keep their original dtype (:issue:`41132`)
- Bug in :class:`DataFrame` construction with a dictionary containing an arraylike with ``ExtensionDtype`` and ``copy=True`` failing to make a copy (:issue:`38939`)
-

Expand Down
6 changes: 3 additions & 3 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,11 +143,11 @@ def _ensure_data(values: ArrayLike) -> tuple[np.ndarray, DtypeObj]:
# until our algos support uint8 directly (see TODO)
return np.asarray(values).astype("uint64"), np.dtype("bool")
elif is_signed_integer_dtype(values):
return ensure_int64(values), np.dtype("int64")
return ensure_int64(values), values.dtype
elif is_unsigned_integer_dtype(values):
return ensure_uint64(values), np.dtype("uint64")
return ensure_uint64(values), values.dtype
elif is_float_dtype(values):
return ensure_float64(values), np.dtype("float64")
return ensure_float64(values), values.dtype
elif is_complex_dtype(values):

# ignore the fact that we are casting to float
Expand Down
32 changes: 23 additions & 9 deletions pandas/tests/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,29 +95,32 @@ def test_basic(self):
exp = np.array(["a", "b", "c"], dtype=object)
tm.assert_numpy_array_equal(uniques, exp)

codes, uniques = algos.factorize(list(reversed(range(5))))
arr = np.arange(5, dtype=np.intp)[::-1]

codes, uniques = algos.factorize(arr)
exp = np.array([0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_numpy_array_equal(codes, exp)
exp = np.array([4, 3, 2, 1, 0], dtype=np.int64)
exp = np.array([4, 3, 2, 1, 0], dtype=arr.dtype)
tm.assert_numpy_array_equal(uniques, exp)

codes, uniques = algos.factorize(list(reversed(range(5))), sort=True)

codes, uniques = algos.factorize(arr, sort=True)
exp = np.array([4, 3, 2, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(codes, exp)
exp = np.array([0, 1, 2, 3, 4], dtype=np.int64)
exp = np.array([0, 1, 2, 3, 4], dtype=arr.dtype)
tm.assert_numpy_array_equal(uniques, exp)

codes, uniques = algos.factorize(list(reversed(np.arange(5.0))))
arr = np.arange(5.0)[::-1]

codes, uniques = algos.factorize(arr)
exp = np.array([0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_numpy_array_equal(codes, exp)
exp = np.array([4.0, 3.0, 2.0, 1.0, 0.0], dtype=np.float64)
exp = np.array([4.0, 3.0, 2.0, 1.0, 0.0], dtype=arr.dtype)
tm.assert_numpy_array_equal(uniques, exp)

codes, uniques = algos.factorize(list(reversed(np.arange(5.0))), sort=True)
codes, uniques = algos.factorize(arr, sort=True)
exp = np.array([4, 3, 2, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(codes, exp)
exp = np.array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=np.float64)
exp = np.array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=arr.dtype)
tm.assert_numpy_array_equal(uniques, exp)

def test_mixed(self):
Expand Down Expand Up @@ -246,6 +249,17 @@ def test_complex_sorting(self):
with pytest.raises(TypeError, match=msg):
algos.factorize(x17[::-1], sort=True)

def test_numeric_dtype_factorize(self, any_real_dtype):
# GH41132
dtype = any_real_dtype
data = np.array([1, 2, 2, 1], dtype=dtype)
expected_codes = np.array([0, 1, 1, 0], dtype=np.intp)
expected_uniques = np.array([1, 2], dtype=dtype)

codes, uniques = algos.factorize(data)
tm.assert_numpy_array_equal(codes, expected_codes)
tm.assert_numpy_array_equal(uniques, expected_uniques)

def test_float64_factorize(self, writable):
data = np.array([1.0, 1e8, 1.0, 1e-8, 1e8, 1.0], dtype=np.float64)
data.setflags(write=writable)
Expand Down