Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DEPR: Series.astype(np.datetime64) #48555

Merged
merged 1 commit into from
Sep 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.5.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -936,6 +936,7 @@ Other Deprecations
- Deprecated the ``sort_columns`` argument in :meth:`DataFrame.plot` and :meth:`Series.plot` (:issue:`47563`).
- Deprecated positional arguments for all but the first argument of :meth:`DataFrame.to_stata` and :func:`read_stata`, use keyword arguments instead (:issue:`48128`).
- Deprecated the ``mangle_dupe_cols`` argument in :func:`read_csv`, :func:`read_fwf`, :func:`read_table` and :func:`read_excel`. The argument was never implemented, and a new argument where the renaming pattern can be specified will be added instead (:issue:`47718`)
- Deprecated allowing ``dtype='datetime64'`` or ``dtype=np.datetime64`` in :meth:`Series.astype`, use "datetime64[ns]" instead (:issue:`47844`)

.. ---------------------------------------------------------------------------
.. _whatsnew_150.performance:
Expand Down
16 changes: 16 additions & 0 deletions pandas/core/arrays/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -632,6 +632,22 @@ def astype(self, dtype, copy: bool = True):
return type(self)._simple_new(res_values, dtype=dtype)
# TODO: preserve freq?

elif (
self.tz is None
and is_datetime64_dtype(dtype)
and dtype != self.dtype
and is_unitless(dtype)
):
# TODO(2.0): just fall through to dtl.DatetimeLikeArrayMixin.astype
warnings.warn(
"Passing unit-less datetime64 dtype to .astype is deprecated "
"and will raise in a future version. Pass 'datetime64[ns]' instead",
FutureWarning,
stacklevel=find_stack_level(inspect.currentframe()),
)
# unit conversion e.g. datetime64[s]
return self._ndarray.astype(dtype)

elif is_period_dtype(dtype):
return self.to_period(freq=dtype.freq)
return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy)
Expand Down
6 changes: 6 additions & 0 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@
IncompatibleFrequency,
OutOfBoundsDatetime,
Timestamp,
is_unitless,
tz_compare,
)
from pandas._typing import (
Expand Down Expand Up @@ -1086,6 +1087,11 @@ def astype(self, dtype, copy: bool = True):

values = self._data
if isinstance(values, ExtensionArray):
if isinstance(dtype, np.dtype) and dtype.kind == "M" and is_unitless(dtype):
mroeschke marked this conversation as resolved.
Show resolved Hide resolved
# TODO(2.0): remove this special-casing once this is enforced
# in DTA.astype
raise TypeError(f"Cannot cast {type(self).__name__} to dtype")

with rewrite_exception(type(values).__name__, type(self).__name__):
new_values = values.astype(dtype, copy=copy)

Expand Down
13 changes: 13 additions & 0 deletions pandas/tests/series/methods/test_astype.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,19 @@


class TestAstypeAPI:
def test_astype_unitless_dt64_deprecated(self):
# GH#47844
ser = Series(["1970-01-01", "1970-01-01", "1970-01-01"], dtype="datetime64[ns]")

msg = "Passing unit-less datetime64 dtype to .astype is deprecated and "
with tm.assert_produces_warning(FutureWarning, match=msg):
res = ser.astype(np.datetime64)
tm.assert_series_equal(ser, res)

with tm.assert_produces_warning(FutureWarning, match=msg):
res = ser.astype("datetime64")
tm.assert_series_equal(ser, res)

def test_arg_for_errors_in_astype(self):
# see GH#14878
ser = Series([1, 2, 3])
Expand Down