Skip to content

Implement masked algorithm for mode #55340

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Nov 18, 2023
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v2.2.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ Other enhancements
- :func:`read_csv` now supports ``on_bad_lines`` parameter with ``engine="pyarrow"``. (:issue:`54480`)
- :meth:`ExtensionArray._explode` interface method added to allow extension type implementations of the ``explode`` method (:issue:`54833`)
- DataFrame.apply now allows the usage of numba (via ``engine="numba"``) to JIT compile the passed function, allowing for potential speedups (:issue:`54666`)
- Implement masked algorithms for :meth:`Series.value_counts` (:issue:`54984`)
- Implement masked algorithms for :meth:`Series.value_counts` and :meth:`Series.mode` (:issue:`54984`, :issue:`55340`)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

users mainly need to know this improves performance?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

moved and reworded

-

.. ---------------------------------------------------------------------------
Expand Down
10 changes: 7 additions & 3 deletions pandas/_libs/hashtable_func_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -404,12 +404,13 @@ def mode(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None):
cdef:
ndarray[htfunc_t] keys
ndarray[htfunc_t] modes
ndarray[uint8_t] res_mask = None

int64_t[::1] counts
int64_t count, _, max_count = -1
Py_ssize_t nkeys, k, j = 0
Py_ssize_t nkeys, k, na_counter, j = 0

keys, counts, _ = value_count(values, dropna, mask=mask)
keys, counts, na_counter = value_count(values, dropna, mask=mask)
nkeys = len(keys)

modes = np.empty(nkeys, dtype=values.dtype)
Expand Down Expand Up @@ -440,7 +441,10 @@ def mode(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None):

modes[j] = keys[k]

return modes[:j + 1]
if na_counter > 0:
res_mask = np.zeros(j+1, dtype=np.bool_)
res_mask[j] = True
return modes[:j + 1], res_mask


{{py:
Expand Down
5 changes: 4 additions & 1 deletion pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1039,7 +1039,10 @@ def mode(

values = _ensure_data(values)

npresult = htable.mode(values, dropna=dropna, mask=mask)
npresult, res_mask = htable.mode(values, dropna=dropna, mask=mask)
if res_mask is not None:
return npresult, res_mask # type: ignore[return-value]

try:
npresult = np.sort(npresult)
except TypeError as err:
Expand Down
10 changes: 10 additions & 0 deletions pandas/core/arrays/masked.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@
from pandas.core.algorithms import (
factorize_array,
isin,
mode,
take,
)
from pandas.core.array_algos import (
Expand Down Expand Up @@ -1061,6 +1062,15 @@ def value_counts(self, dropna: bool = True) -> Series:
)
return Series(arr, index=index, name="count", copy=False)

def _mode(self, dropna: bool = True) -> Self:
if dropna:
result = mode(self._data, dropna=dropna, mask=self._mask)
res_mask = np.zeros(result.shape, dtype=np.bool_)
else:
result, res_mask = mode(self._data, dropna=dropna, mask=self._mask)
result = type(self)(result, res_mask) # type: ignore[arg-type]
return result[result.argsort()]

@doc(ExtensionArray.equals)
def equals(self, other) -> bool:
if type(self) != type(other):
Expand Down
10 changes: 5 additions & 5 deletions pandas/tests/libs/test_hashtable.py
Original file line number Diff line number Diff line change
Expand Up @@ -644,21 +644,21 @@ def test_mode(self, dtype, writable):
values = np.repeat(np.arange(N).astype(dtype), 5)
values[0] = 42
values.flags.writeable = writable
result = ht.mode(values, False)
result = ht.mode(values, False)[0]
assert result == 42

def test_mode_stable(self, dtype, writable):
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype)
values.flags.writeable = writable
keys = ht.mode(values, False)
keys = ht.mode(values, False)[0]
tm.assert_numpy_array_equal(keys, values)


def test_modes_with_nans():
# GH42688, nans aren't mangled
nulls = [pd.NA, np.nan, pd.NaT, None]
values = np.array([True] + nulls * 2, dtype=np.object_)
modes = ht.mode(values, False)
modes = ht.mode(values, False)[0]
assert modes.size == len(nulls)


Expand Down Expand Up @@ -724,8 +724,8 @@ def test_ismember_no(self, dtype):

def test_mode(self, dtype):
values = np.array([42, np.nan, np.nan, np.nan], dtype=dtype)
assert ht.mode(values, True) == 42
assert np.isnan(ht.mode(values, False))
assert ht.mode(values, True)[0] == 42
assert np.isnan(ht.mode(values, False)[0])


def test_ismember_tuple_with_nans():
Expand Down
22 changes: 22 additions & 0 deletions pandas/tests/series/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,28 @@ def test_mode_extension_dtype(as_period):
tm.assert_series_equal(res, ser)


def test_mode_nullable_dtype(any_numeric_ea_dtype):
# GH#55340
ser = Series([1, 3, 2, pd.NA, 3, 2, pd.NA], dtype=any_numeric_ea_dtype)
result = ser.mode(dropna=False)
expected = Series([2, 3, pd.NA], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

result = ser.mode(dropna=True)
expected = Series([2, 3], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

ser[-1] = pd.NA

result = ser.mode(dropna=True)
expected = Series([2, 3], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

result = ser.mode(dropna=False)
expected = Series([pd.NA], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)


def test_reductions_td64_with_nat():
# GH#8617
ser = Series([0, pd.NaT], dtype="m8[ns]")
Expand Down