Skip to content

Backport PR #57157 on branch 2.2.x (BUG: Fix to_dict with datelike types and orient=list) #57160

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.2.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ Fixed regressions
- Fixed regression in :func:`merge_ordered` raising ``TypeError`` for ``fill_method="ffill"`` and ``how="left"`` (:issue:`57010`)
- Fixed regression in :func:`wide_to_long` raising an ``AttributeError`` for string columns (:issue:`57066`)
- Fixed regression in :meth:`DataFrame.loc` raising ``IndexError`` for non-unique, masked dtype indexes where result has more than 10,000 rows (:issue:`57027`)
- Fixed regression in :meth:`DataFrame.to_dict` with ``orient='list'`` and datetime or timedelta types returning integers (:issue:`54824`)
- Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` ignoring the ``skipna`` argument (:issue:`57040`)
- Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` where values containing the minimum or maximum value for the dtype could produce incorrect results (:issue:`57040`)
- Fixed regression in :meth:`Index.join` raising ``TypeError`` when joining an empty index to a non-empty index containing mixed dtype values (:issue:`57048`)
Expand Down
8 changes: 2 additions & 6 deletions pandas/core/methods/to_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,13 +171,9 @@ def to_dict(
return into_c(
(
k,
list(
map(
maybe_box_native, v.to_numpy(na_value=box_na_values[i]).tolist()
)
)
list(map(maybe_box_native, v.to_numpy(na_value=box_na_values[i])))
if i in object_dtype_indices_as_set
else v.to_numpy().tolist(),
else list(map(maybe_box_native, v.to_numpy())),
)
for i, (k, v) in enumerate(df.items())
)
Expand Down
14 changes: 14 additions & 0 deletions pandas/tests/frame/methods/test_to_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,11 @@
NA,
DataFrame,
Index,
Interval,
MultiIndex,
Period,
Series,
Timedelta,
Timestamp,
)
import pandas._testing as tm
Expand Down Expand Up @@ -519,3 +522,14 @@ def test_to_dict_pos_args_deprecation(self):
)
with tm.assert_produces_warning(FutureWarning, match=msg):
df.to_dict("records", {})


@pytest.mark.parametrize(
"val", [Timestamp(2020, 1, 1), Timedelta(1), Period("2020"), Interval(1, 2)]
)
def test_to_dict_list_pd_scalars(val):
# GH 54824
df = DataFrame({"a": [val]})
result = df.to_dict(orient="list")
expected = {"a": [val]}
assert result == expected