Skip to content
Open
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v3.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -972,6 +972,7 @@ Datetimelike
- Bug in comparison between objects with pyarrow date dtype and ``timestamp[pyarrow]`` or ``np.datetime64`` dtype failing to consider these as non-comparable (:issue:`62157`)
- Bug in constructing arrays with :class:`ArrowDtype` with ``timestamp`` type incorrectly allowing ``Decimal("NaN")`` (:issue:`61773`)
- Bug in constructing arrays with a timezone-aware :class:`ArrowDtype` from timezone-naive datetime objects incorrectly treating those as UTC times instead of wall times like :class:`DatetimeTZDtype` (:issue:`61775`)
- Bug in retaining frequency in :meth:`value_counts` specifically for :meth:`DatetimeIndex` and :meth:`TimedeltaIndex` (:issue:`33830`)
- Bug in setting scalar values with mismatched resolution into arrays with non-nanosecond ``datetime64``, ``timedelta64`` or :class:`DatetimeTZDtype` incorrectly truncating those scalars (:issue:`56410`)


Expand Down
29 changes: 29 additions & 0 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -867,6 +867,26 @@ def value_counts_internal(
Series,
)

def _preserve_freq(original_values, result_index):
freq = getattr(original_values, "freq", None)

if (
freq is not None
and type(original_values) is type(result_index)
and len(result_index) == len(original_values)
and result_index.equals(original_values)
):
try:
# Rebuild index with freq using the same constructor
return type(result_index)(
result_index._data, freq=freq, name=result_index.name
)
except (TypeError, ValueError):
# If reconstruction fails, return original index
pass

return result_index

index_name = getattr(values, "name", None)
name = "proportion" if normalize else "count"

Expand Down Expand Up @@ -929,6 +949,15 @@ def value_counts_internal(
# Starting in 3.0, we no longer perform dtype inference on the
# Index object we construct here, xref GH#56161
idx = Index(keys, dtype=keys.dtype, name=index_name)

if (
bins is None
and not sort
and hasattr(values, "freq")
and values.freq is not None
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
and hasattr(values, "freq")
and values.freq is not None
and hasattr(values, "freq")
and values.freq is not None

Instead could you isinstance(values, DatetimeIndex) (you might need a local import of DatetimeIndex). Also you can use values.inferred_freq to get the frequency instead

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the suggestion. values.inferred_freq makes sense!
However, my assumption was that we want to make it more generic and not localise this fix to just DatetimeIndex. Please could you help me understand this?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

DatetimeIndex is the only relevant object that requires frequency preservation, so it's OK to special case here

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Got it!
I have also added TimedeltaIndex as that was one of the examples given in the issue for frequency preservation. Let me know if that makes sense.

):
idx = _preserve_freq(values, idx)

result = Series(counts, index=idx, name=name, copy=False)

if sort:
Expand Down
150 changes: 150 additions & 0 deletions pandas/tests/base/test_value_counts.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,3 +339,153 @@ def test_value_counts_object_inference_deprecated():
exp = dti.value_counts()
exp.index = exp.index.astype(object)
tm.assert_series_equal(res, exp)


def _vc_make_index(kind: str, periods=5, freq="D"):
if kind == "dt":
return pd.date_range("2016-01-01", periods=periods, freq=freq)
if kind == "td":
return pd.timedelta_range(Timedelta(0), periods=periods, freq=freq)
raise ValueError("kind must be 'dt' or 'td'")


@pytest.mark.parametrize(
"kind,freq,normalize",
[
("dt", "D", False),
("dt", "D", True),
("td", "D", False),
("td", "D", True),
("td", Timedelta(hours=1), False),
("td", Timedelta(hours=1), True),
],
)
def test_value_counts_freq_preserved_datetimelike_no_sort(kind, freq, normalize):
idx = _vc_make_index(kind, periods=5, freq=freq)
vc = idx.value_counts(sort=False, normalize=normalize)
assert vc.index.freq == idx.freq
if normalize:
assert np.isclose(vc.values, 1 / len(idx)).all()


@pytest.mark.parametrize(
"kind,freq",
[
("dt", "D"),
("td", "D"),
("td", Timedelta(hours=1)),
],
)
def test_value_counts_freq_drops_datetimelike_when_sorted(kind, freq):
idx = _vc_make_index(kind, periods=5, freq=freq)
vc = idx.value_counts() # default sort=True (reorders)
assert vc.index.freq is None


@pytest.mark.parametrize(
"kind,freq",
[
("dt", "D"),
("td", "D"),
("td", Timedelta(hours=1)),
],
)
def test_value_counts_freq_drops_datetimelike_with_duplicates(kind, freq):
base = _vc_make_index(kind, periods=5, freq=freq)
obj = base.insert(1, base[1]) # duplicate one label
vc = obj.value_counts(sort=False)
assert vc.index.freq is None


@pytest.mark.parametrize(
"kind,freq",
[
("dt", "D"),
("td", "D"),
("td", Timedelta(hours=1)),
],
)
def test_value_counts_freq_drops_datetimelike_with_gap(kind, freq):
base = _vc_make_index(kind, periods=5, freq=freq)
obj = base.delete(2) # remove one step to break contiguity
vc = obj.value_counts(sort=False)
assert vc.index.freq is None


@pytest.mark.parametrize(
"kind,freq,dropna,expect_hasnans",
[
("dt", "D", False, True), # keep NaT
("dt", "D", True, False), # drop NaT
("td", "D", False, True),
("td", "D", True, False),
("td", Timedelta(hours=1), False, True),
("td", Timedelta(hours=1), True, False),
],
)
def test_value_counts_freq_drops_datetimelike_with_nat(
kind, freq, dropna, expect_hasnans
):
base = _vc_make_index(kind, periods=3, freq=freq)
obj = base.insert(1, pd.NaT)
vc = obj.value_counts(dropna=dropna, sort=False)
assert vc.index.freq is None
assert vc.index.hasnans is expect_hasnans


@pytest.mark.parametrize(
"freq,start,periods,sort",
[
("D", "2016-01-01", 5, False),
("D", "2016-01-01", 5, True),
("M", "2016-01", 6, False), # MonthEnd
("M", "2016-01", 6, True),
("Q-DEC", "2016Q1", 4, False), # QuarterEnd (Dec anchored)
("Q-DEC", "2016Q1", 4, True),
("Y-DEC", "2014", 3, False), # YearEnd (Dec anchored)
("Y-DEC", "2014", 3, True),
],
)
def test_value_counts_period_freq_preserved_sort_and_nosort(freq, start, periods, sort):
pi = pd.period_range(start=start, periods=periods, freq=freq)
vc = pi.value_counts(sort=sort)
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq


def test_value_counts_period_freq_preserved_with_duplicates():
pi = pd.period_range("2016-01", periods=5, freq="M")
obj = pi.insert(1, pi[1]) # duplicate one label
vc = obj.value_counts(sort=False)
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq


def test_value_counts_period_freq_preserved_with_gap():
pi = pd.period_range("2016-01", periods=5, freq="M")
obj = pi.delete(2) # remove one element
vc = obj.value_counts(sort=False)
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq


def test_value_counts_period_freq_preserved_with_normalize():
pi = pd.period_range("2016-01", periods=4, freq="M")
vc = pi.value_counts(normalize=True, sort=False)
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq
assert np.isclose(vc.values, 1 / len(pi)).all()


def test_value_counts_period_freq_preserved_with_nat_dropna_true():
pi = pd.period_range("2016-01", periods=5, freq="M")
obj = pi.insert(1, pd.NaT)
vc = obj.value_counts(dropna=True, sort=False)
assert not vc.index.hasnans
assert isinstance(vc.index, pd.PeriodIndex)
assert vc.index.dtype == pi.dtype
assert vc.index.freq == pi.freq
Loading