Skip to content

CLN: Specialize assert_(np.array_equal(...)) #6374

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 16, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions pandas/tests/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -800,7 +800,7 @@ def test_1d_bool(self):

result = com.take_1d(arr, [0, 2, 2, 1])
expected = arr.take([0, 2, 2, 1])
self.assert_(np.array_equal(result, expected))
self.assert_numpy_array_equal(result, expected)

result = com.take_1d(arr, [0, 2, -1])
self.assertEqual(result.dtype, np.object_)
Expand All @@ -812,11 +812,11 @@ def test_2d_bool(self):

result = com.take_nd(arr, [0, 2, 2, 1])
expected = arr.take([0, 2, 2, 1], axis=0)
self.assert_(np.array_equal(result, expected))
self.assert_numpy_array_equal(result, expected)

result = com.take_nd(arr, [0, 2, 2, 1], axis=1)
expected = arr.take([0, 2, 2, 1], axis=1)
self.assert_(np.array_equal(result, expected))
self.assert_numpy_array_equal(result, expected)

result = com.take_nd(arr, [0, 2, -1])
self.assertEqual(result.dtype, np.object_)
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/test_generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -447,7 +447,7 @@ def test_interpolate(self):
ts_copy[5:10] = np.NaN

linear_interp = ts_copy.interpolate(method='linear')
self.assert_(np.array_equal(linear_interp, ts))
self.assert_numpy_array_equal(linear_interp, ts)

ord_ts = Series([d.toordinal() for d in self.ts.index],
index=self.ts.index).astype(float)
Expand All @@ -456,7 +456,7 @@ def test_interpolate(self):
ord_ts_copy[5:10] = np.NaN

time_interp = ord_ts_copy.interpolate(method='time')
self.assert_(np.array_equal(time_interp, ord_ts))
self.assert_numpy_array_equal(time_interp, ord_ts)

# try time interpolation on a non-TimeSeries
self.assertRaises(ValueError, self.series.interpolate, method='time')
Expand Down
28 changes: 14 additions & 14 deletions pandas/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1720,7 +1720,7 @@ def test_apply_frame_to_series(self):
result = grouped.apply(len)
expected = grouped.count()['C']
self.assert_(result.index.equals(expected.index))
self.assert_(np.array_equal(result.values, expected.values))
self.assert_numpy_array_equal(result.values, expected.values)

def test_apply_frame_concat_series(self):
def trans(group):
Expand Down Expand Up @@ -2198,17 +2198,17 @@ def test_panel_groupby(self):

tm.assert_panel_equal(agged, agged2)

self.assert_(np.array_equal(agged.items, [0, 1]))
self.assert_numpy_array_equal(agged.items, [0, 1])

grouped = self.panel.groupby(lambda x: x.month, axis='major')
agged = grouped.mean()

self.assert_(np.array_equal(agged.major_axis, [1, 2]))
self.assert_numpy_array_equal(agged.major_axis, [1, 2])

grouped = self.panel.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1},
axis='minor')
agged = grouped.mean()
self.assert_(np.array_equal(agged.minor_axis, [0, 1]))
self.assert_numpy_array_equal(agged.minor_axis, [0, 1])

def test_numpy_groupby(self):
from pandas.core.groupby import numpy_groupby
Expand All @@ -2234,8 +2234,8 @@ def test_groupby_2d_malformed(self):
d['label'] = ['l1', 'l2']
tmp = d.groupby(['group']).mean()
res_values = np.array([[0., 1.], [0., 1.]])
self.assert_(np.array_equal(tmp.columns, ['zeros', 'ones']))
self.assert_(np.array_equal(tmp.values, res_values))
self.assert_numpy_array_equal(tmp.columns, ['zeros', 'ones'])
self.assert_numpy_array_equal(tmp.values, res_values)

def test_int32_overflow(self):
B = np.concatenate((np.arange(10000), np.arange(10000),
Expand Down Expand Up @@ -2290,19 +2290,19 @@ def test_groupby_sort_multi(self):
tups = lmap(tuple, df[['a', 'b', 'c']].values)
tups = com._asarray_tuplesafe(tups)
result = df.groupby(['a', 'b', 'c'], sort=True).sum()
self.assert_(np.array_equal(result.index.values,
tups[[1, 2, 0]]))
self.assert_numpy_array_equal(result.index.values,
tups[[1, 2, 0]])

tups = lmap(tuple, df[['c', 'a', 'b']].values)
tups = com._asarray_tuplesafe(tups)
result = df.groupby(['c', 'a', 'b'], sort=True).sum()
self.assert_(np.array_equal(result.index.values, tups))
self.assert_numpy_array_equal(result.index.values, tups)

tups = lmap(tuple, df[['b', 'c', 'a']].values)
tups = com._asarray_tuplesafe(tups)
result = df.groupby(['b', 'c', 'a'], sort=True).sum()
self.assert_(np.array_equal(result.index.values,
tups[[2, 1, 0]]))
self.assert_numpy_array_equal(result.index.values,
tups[[2, 1, 0]])

df = DataFrame({'a': [0, 1, 2, 0, 1, 2],
'b': [0, 0, 0, 1, 1, 1],
Expand Down Expand Up @@ -2452,7 +2452,7 @@ def test_agg_multiple_functions_maintain_order(self):
result = self.df.groupby('A')['C'].agg(funcs)
exp_cols = ['mean', 'max', 'min']

self.assert_(np.array_equal(result.columns, exp_cols))
self.assert_numpy_array_equal(result.columns, exp_cols)

def test_multiple_functions_tuples_and_non_tuples(self):
# #1359
Expand Down Expand Up @@ -2651,10 +2651,10 @@ def test_multiindex_columns_empty_level(self):
df = DataFrame([[long(1), 'A']], columns=midx)

grouped = df.groupby('to filter').groups
self.assert_(np.array_equal(grouped['A'], [0]))
self.assert_numpy_array_equal(grouped['A'], [0])

grouped = df.groupby([('to filter', '')]).groups
self.assert_(np.array_equal(grouped['A'], [0]))
self.assert_numpy_array_equal(grouped['A'], [0])

df = DataFrame([[long(1), 'A'], [long(2), 'B']], columns=midx)

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/test_multilevel.py
Original file line number Diff line number Diff line change
Expand Up @@ -1509,7 +1509,7 @@ def test_int_series_slicing(self):
exp = self.ymd['A'].copy()
s[5:] = 0
exp.values[5:] = 0
self.assert_(np.array_equal(s.values, exp.values))
self.assert_numpy_array_equal(s.values, exp.values)

result = self.ymd[5:]
expected = self.ymd.reindex(s.index[5:])
Expand Down
12 changes: 6 additions & 6 deletions pandas/tests/test_panel.py
Original file line number Diff line number Diff line change
Expand Up @@ -754,8 +754,8 @@ def test_comp(func):

# versus same index
result = func(p1, p2)
self.assert_(np.array_equal(result.values,
func(p1.values, p2.values)))
self.assert_numpy_array_equal(result.values,
func(p1.values, p2.values))

# versus non-indexed same objs
self.assertRaises(Exception, func, p1, tp)
Expand All @@ -765,8 +765,8 @@ def test_comp(func):

# versus scalar
result3 = func(self.panel, 0)
self.assert_(np.array_equal(result3.values,
func(self.panel.values, 0)))
self.assert_numpy_array_equal(result3.values,
func(self.panel.values, 0))

test_comp(operator.eq)
test_comp(operator.ne)
Expand Down Expand Up @@ -2155,7 +2155,7 @@ def test_axis_dummies(self):
transformed = make_axis_dummies(self.panel, 'minor',
transform=mapping.get)
self.assertEqual(len(transformed.columns), 2)
self.assert_(np.array_equal(transformed.columns, ['one', 'two']))
self.assert_numpy_array_equal(transformed.columns, ['one', 'two'])

# TODO: test correctness

Expand All @@ -2165,7 +2165,7 @@ def test_get_dummies(self):
self.panel['Label'] = self.panel.index.labels[1]
minor_dummies = make_axis_dummies(self.panel, 'minor')
dummies = get_dummies(self.panel['Label'])
self.assert_(np.array_equal(dummies.values, minor_dummies.values))
self.assert_numpy_array_equal(dummies.values, minor_dummies.values)

def test_mean(self):
means = self.panel.mean(level='minor')
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/test_strings.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ def test_cat(self):
# Multiple arrays
result = strings.str_cat(one, [two], na_rep='NA')
exp = ['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA']
self.assert_(np.array_equal(result, exp))
self.assert_numpy_array_equal(result, exp)

result = strings.str_cat(one, two)
exp = ['aa', NA, 'bb', 'bd', 'cfoo', NA]
Expand Down