Skip to content

[ENH] Add orient argument and split option to to_dict. (GH7840) #8486

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 6 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion doc/source/v0.15.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -767,6 +767,7 @@ Prior Version Deprecations/Changes
Deprecations
~~~~~~~~~~~~

- The ``outtype`` argument to ``pd.DataFrame.to_dict`` has been deprecated in favor of ``orient``. (:issue:`7840`)
- The ``convert_dummies`` method has been deprecated in favor of
``get_dummies`` (:issue:`8140`)
- The ``infer_dst`` argument in ``tz_localize`` will be deprecated in favor of
Expand Down Expand Up @@ -849,7 +850,7 @@ Enhancements
idx
idx + pd.offsets.MonthEnd(3)


- Added ``split`` as an option to the ``orient`` argument in ``pd.DataFrame.to_dict``. (:issue:`7840`)

- The ``get_dummies`` method can now be used on DataFrames. By default only
catagorical columns are encoded as 0's and 1's, while other columns are
Expand Down
36 changes: 23 additions & 13 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -640,19 +640,25 @@ def from_dict(cls, data, orient='columns', dtype=None):

return cls(data, index=index, columns=columns, dtype=dtype)

def to_dict(self, outtype='dict'):
"""
Convert DataFrame to dictionary.
@deprecate_kwarg(old_arg_name='outtype', new_arg_name='orient')
def to_dict(self, orient='dict'):
"""Convert DataFrame to dictionary.

Parameters
----------
outtype : str {'dict', 'list', 'series', 'records'}
Determines the type of the values of the dictionary. The
default `dict` is a nested dictionary {column -> {index -> value}}.
`list` returns {column -> list(values)}. `series` returns
{column -> Series(values)}. `records` returns [{columns -> value}].
Abbreviations are allowed.
orient : str {'dict', 'list', 'series', 'split', 'records'}
Determines the type of the values of the dictionary.

- dict (default) : dict like {column -> {index -> value}}
- list : dict like {column -> [values]}
- series : dict like {column -> Series(values)}
- split : dict like
{index -> [index], columns -> [columns], data -> [values]}
- records : list like
[{column -> value}, ... , {column -> value}]

Abbreviations are allowed. `s` indicates `series` and `sp`
indicates `split`.

Returns
-------
Expand All @@ -661,13 +667,17 @@ def to_dict(self, outtype='dict'):
if not self.columns.is_unique:
warnings.warn("DataFrame columns are not unique, some "
"columns will be omitted.", UserWarning)
if outtype.lower().startswith('d'):
if orient.lower().startswith('d'):
return dict((k, v.to_dict()) for k, v in compat.iteritems(self))
elif outtype.lower().startswith('l'):
elif orient.lower().startswith('l'):
return dict((k, v.tolist()) for k, v in compat.iteritems(self))
elif outtype.lower().startswith('s'):
elif orient.lower().startswith('sp'):
return {'index': self.index.tolist(),
'columns': self.columns.tolist(),
'data': self.values.tolist()}
elif orient.lower().startswith('s'):
return dict((k, v) for k, v in compat.iteritems(self))
elif outtype.lower().startswith('r'):
elif orient.lower().startswith('r'):
return [dict((k, v) for k, v in zip(self.columns, row))
for row in self.values]
else: # pragma: no cover
Expand Down
7 changes: 7 additions & 0 deletions pandas/tests/test_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -4037,6 +4037,13 @@ def test_to_dict(self):
for k2, v2 in compat.iteritems(v):
self.assertEqual(v2, recons_data[k][k2])

recons_data = DataFrame(test_data).to_dict("sp")

expected_split = {'columns': ['A', 'B'], 'index': ['1', '2', '3'],
'data': [[1.0, '1'], [2.0, '2'], [nan, '3']]}

tm.assert_almost_equal(recons_data, expected_split)

recons_data = DataFrame(test_data).to_dict("r")

expected_records = [{'A': 1.0, 'B': '1'},
Expand Down