yamldt
is a YAML/DTS to DT blob generator/compiler and validator.
The YAML schema is functionaly equivalent to DTS and supports all DTS features,
while as a DTS compiler is bit-exact compatible with DTC.
Validation is performed against a YAML schema that defines properties and constraints. A checker uses the schema to generate small code fragments that are compiled to ebpf and executed for the specific validation of each DT node the rule selects in the output tree.
yamldt
parses a device tree description (source) file in YAML/DTS format
and outputs a device tree blob (which can be bit-exact to the one generated
from the reference dtc compiler if the -C option is used).
An automatic DTS to YAML conversion tool, that works on standard DTS files which use the preprocessor. Capable of detecting macro usage and advanced DTS concepts, like property/nodes deletes etc.
Conversion is accurate as long as the source file still looks like a DTS source (i.e. not using extremely complex macros).
A DT aware YAML schema is a good fit as a DTS syntax alternative.
YAML is a human-readable data serialization language and is expressive enough to cover all DTS source features.
Simple YAML files are just key value pairs that are very easy to parse, even without using a formal YAML parser. YAML streams are containing documents separated by the --- marker. This model is a good fit for DT since one may simply append few lines of text in a given YAML stream to modify it. In addition, composition of YAML files in restricted environments may be as simple be appending a few lines of text to an existing YAML file.
The parsers of YAML are very mature, as YAML was first released in 2001. It is currently in wide-spread use and schema validation tools are available and common. YAML support is available for every major programming language.
The following projects currently use YAML as their configuration format:
Data in YAML can easily be converted to and from other formats making it convertable to formats which future tools may understand.
More importantly YAML offers (an optional) type information for each property item, which is crucial for thorough validation and checking against device tree bindings (once the bindings are converted to a machine readable format, preferably YAML).
yamldt implements a schema checker partly based on an RFC posted on the mainline linux-kernel list some years ago by Rob Herring.
yamldt
is capable of performing validation of DT constructs using
a C-based eBPF checker. eBPF code fragments are assembled that
can perform type checking of properties and enforce arbitrary value
constraints while fully supporting inheritance.
As an example, here's how the validation of a given fragment works using on a jedec,spi-nor node:
m25p80@0:
compatible: "s25fl256s1"
spi-max-frequency: 76800000
reg: 0
spi-tx-bus-width: 1
spi-rx-bus-width: 4
"#address-cells": 1
"#size-cells": 1
The binding for this is:
%YAML 1.1
---
jedec,spi-nor:
version: 1
title: >
SPI NOR flash: ST M25Pxx (and similar) serial flash chips
maintainer:
name: Unknown
inherits: *spi-slave
properties:
reg:
category: required
type: int
description: chip select address of device
compatible: &jedec-spi-nor-compatible
category: required
type: strseq
description: >
May include a device-specific string consisting of the
manufacturer and name of the chip. A list of supported chip
names follows.
Must also include "jedec,spi-nor" for any SPI NOR flash that can
be identified by the JEDEC READ ID opcode (0x9F).
constraint: |
anystreq(v, "at25df321a") ||
anystreq(v, "at25df641") ||
anystreq(v, "at26df081a") ||
anystreq(v, "mr25h256") ||
anystreq(v, "mr25h10") ||
anystreq(v, "mr25h40") ||
anystreq(v, "mx25l4005a") ||
anystreq(v, "mx25l1606e") ||
anystreq(v, "mx25l6405d") ||
anystreq(v,"mx25l12805d") ||
anystreq(v,"mx25l25635e") ||
anystreq(v, "n25q064") ||
anystreq(v, "n25q128a11") ||
anystreq(v, "n25q128a13") ||
anystreq(v, "n25q512a") ||
anystreq(v, "s25fl256s1") ||
anystreq(v, "s25fl512s") ||
anystreq(v, "s25sl12801") ||
anystreq(v, "s25fl008k") ||
anystreq(v, "s25fl064k") ||
anystreq(v,"sst25vf040b") ||
anystreq(v, "m25p40") ||
anystreq(v, "m25p80") ||
anystreq(v, "m25p16") ||
anystreq(v, "m25p32") ||
anystreq(v, "m25p64") ||
anystreq(v, "m25p128") ||
anystreq(v, "w25x80") ||
anystreq(v, "w25x32") ||
anystreq(v, "w25q32") ||
anystreq(v, "w25q64") ||
anystreq(v, "w25q32dw") ||
anystreq(v, "w25q80bl") ||
anystreq(v, "w25q128") ||
anystreq(v, "w25q256")
spi-max-frequency:
category: required
type: int
description: Maximum frequency of the SPI bus the chip can operate at
constraint: |
v > 0 && v < 100000000
m25p,fast-read:
category: optional
type: bool
description: >
Use the "fast read" opcode to read data from the chip instead
of the usual "read" opcode. This opcode is not supported by
all chips and support for it can not be detected at runtime.
Refer to your chips' datasheet to check if this is supported
by your chip.
example:
dts: |
flash: m25p80@0 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "spansion,m25p80", "jedec,spi-nor";
reg = <0>;
spi-max-frequency = <40000000>;
m25p,fast-read;
};
yaml: |
m25p80@0: &flash
"#address-cells": 1
"#size-cells": 1
compatible: [ "spansion,m25p80", "jedec,spi-nor" ]
reg: 0;
spi-max-frequency: 40000000
m25p,fast-read: true
Note the constraint rule matches on any compatible string in the
given list. This binding inherits from spi-slave as indicated by the line: inherits: *spi-slave
*spi-slave
is standard YAML reference notation which points to
the spi-slave binding, pasted here for convenience:
%YAML 1.1
---
spi-slave: &spi-slave
version: 1
title: SPI Slave Devices
maintainer:
name: Mark Brown <broonie@kernel.org>
inherits: *device-compatible
class: spi-slave
virtual: true
description: >
SPI (Serial Peripheral Interface) slave bus devices are children of
a SPI master bus device.
# constraint: |+
# class_of(parent(n), "spi")
properties:
reg:
category: required
type: int
description: chip select address of device
compatible:
category: required
type: strseq
description: compatible strings
spi-max-frequency:
category: required
type: int
description: Maximum SPI clocking speed of device in Hz
spi-cpol:
category: optional
type: bool
description: >
Boolean property indicating device requires
inverse clock polarity (CPOL) mode
spi-cpha:
category: optional
type: bool
description: >
Boolean property indicating device requires
shifted clock phase (CPHA) mode
spi-cs-high:
category: optional
type: bool
description: >
Boolean property indicating device requires
chip select active high
spi-3wire:
category: optional
type: bool
description: >
Boolean property indicating device requires
3-wire mode.
spi-lsb-first:
category: optional
type: bool
description: >
Boolean property indicating device requires
LSB first mode.
spi-tx-bus-width:
category: optional
type: int
constraint: v == 1 || v == 2 || v == 4
description: >
The bus width(number of data wires) that
used for MOSI. Defaults to 1 if not present.
spi-rx-bus-width:
category: optional
type: int
constraint: v == 1 || v == 2 || v == 4
description: >
The bus width(number of data wires) that
used for MISO. Defaults to 1 if not present.
notes: >
Some SPI controllers and devices support Dual and Quad SPI transfer mode.
It allows data in the SPI system to be transferred in 2 wires(DUAL) or
4 wires(QUAD).
Now the value that spi-tx-bus-width and spi-rx-bus-width can receive is
only 1(SINGLE), 2(DUAL) and 4(QUAD). Dual/Quad mode is not allowed when
3-wire mode is used.
If a gpio chipselect is used for the SPI slave the gpio number will be
passed via the SPI master node cs-gpios property.
example:
dts: |
spi@f00 {
ethernet-switch@0 {
compatible = "micrel,ks8995m";
spi-max-frequency = <1000000>;
reg = <0>;
};
codec@1 {
compatible = "ti,tlv320aic26";
spi-max-frequency = <100000>;
reg = <1>;
};
};
yaml: |
spi@f00:
ethernet-switch@0:
compatible: "micrel,ks8995m"
spi-max-frequency: 1000000
reg: 0
codec@1:
compatible: "ti,tlv320aic26"
spi-max-frequency: 100000
reg: 1
Note the &spi-slave
anchor, this is what it's used to refer to
other parts of the schema.
The SPI slave binding defines a number of properties that all
inherited bindings include. This in turn inherits from device-compatible
which is this:
%YAML 1.1
---
device-compatible: &device-compatible
title: Contraint for devices with compatible properties
# select node for checking when the compatible constraint and
# the device status enable constraint are met.
selected: [ "compatible", *device-status-enabled ]
class: constraint
virtual: true
Note that device-compatible is a binding that all devices defined with the DT schema will inherit from.
The selected
property will be used to generate a select()
method that will be used to to find out whether a node should be
checked against a given rule.
The selected
rule defines two constraints. The first one
is the name of a variable in a derived binding that all
its constraints must satisfy; in this case it's the
jedec,spi-nor compatible constraint in the binding above.
The selected constraint is a reference to the
device-status-enabled
constrainst defined at:
%YAML 1.1
---
device-enabled:
title: Contraint for enabled devices
class: constraint
virtual: true
properties:
status: &device-status-enabled
category: optional
type: str
description: Marks device state as enabled
constraint: |
!exists || streq(v, "okay") || streq(v, "ok")
The device-enabled
constraint checks where the node is
enabled in DT parlance.
Taking those two constraints together yamldt generates an enable method filter which triggers on an enable device node that matches any of the compatible strings defined in the jedec,spi-nor binding.
The check method will be generated by collecting all the property constraints (category, type and explicit value constraints).
Note how in the above example a variable (v) is used as the current property value. The generated methods will provide it, initialized to the current value to the constraint.
Note that custom, manually written select and check methods are possible but their usage is not recommended for simple types.
Install libyaml-dev and the standard autoconf/automake generation tools.
Compile by the standard ./autogen.sh
, ./configure
and make cycle.
For a complete example of a port of a board DTS file to YAML take a
look in the port/
directory
You can pass a CPP processed file to yamldt
and everything works
as expected.
The bundled validator requires a working ebpf compiler and libelf. Known good working clang versions with ebpf support are 4.0 and higher.
The yamldt
options available are:
yamldt [options] <input-file>
options are:
-q, --quiet Suppress; -q (warnings) -qq (errors) -qqq (everything)
-I, --in-format=X Input format type X=[auto|yaml|dts]
-O, --out-format=X Output format type X=[auto|yaml|dtb|dts|null]
-o, --out=X Output file
-c Don't resolve references (object mode)
-g, --codegen Code generator configuration file
--schema Use schema (all yaml files in dir/)
--save-temps Save temporary files
--schema-save Save schema to given file
--color [auto|off|on]
--debug Debug messages
-h, --help Help
-v, --version Display version
DTB specific options
-V, --out-version=X DTB blob version to produce (only 17 supported)
-C, --compatible Bit-exact DTC compatibility mode
-@, --symbols Generate symbols node
-A, --auto-alias Generate aliases for all labels
-R, --reserve=X Make space for X reserve map entries
-S, --space=X Make the DTB blob at least X bytes long
-a, --align=X Make the DTB blob align to X bytes
-p, --pad=X Pad the DTB blob with X bytes
-H, --phandle=X Set phandle format [legacy|epapr|both]
-W, --warning=X Enable/disable warning (NOP)
-E, --error=X Enable/disable error (NOP)
-b, --boot-cpu=X Force boot cpuid to X
-q/--quiet
suppresses message output.
The -I/--in-format
option selects the input format type. By
default is set to auto which is capable of selecting based on
file extension and input format source patterns.
The -O/--out-format
option selects the output format type. By
default is set to auto which uses the output file extension.
-o/--out
set the output file.
The -c
option causes unresolved references to remain in the
output file resuling in an object file. If the output format
is set to DTB/DTS it will generate an overlay, if set to yaml
results to a YAML file which can be subsequently recompiled
as an intermediate object file.
The -g/--codegen
option will use the given YAML file(s)
(or dir/ as in the schema option) as input for the code generator.
The --schema
option will use the given file(s) as
input for the checker. As an extension, if given a directory name
with a terminating slash (i.e. dir/) it will recursively collect
and use all YAML files within.
The --save-temps
option will save all intermediate files/blobs.
schema-save
will save the processed schema and codegen file including
all compiled validation filters. Using it speeds validation of
multiple files since it can be used as an input via the --schema option.
--color
controls color output in the terminal, while --debug
enables
the generation of a considerable amount of debugging messages.
The following DTB specific options are supported:
-V/--out-version
selects the DTB blob version; currently only version 17
is supported.
The -C/--compatible
option generates a bit-exact DTB file as the DTC
compiler.
The -@/--symbols
and -A/--auto-alias
options generate a symbols and
alias entries for all the defined labels in the source files.
The -R/--reserve
, -S/--space
, -a/--align
and -p/--pad
options work
the same way as in DTC. -R
add reserve memreserve entries, -S
adds extra
space, -a
aligns and -p
pads extra space end of the DTB blob.
The -H/--phandle
option selects either legacy/epapr or both phandle styles.
The -W/--warning
and -E/--error
options are there for command line compatibility
with dtc and are ignored.
Finally -d/--boot-cpu
forces the boot cpuid.
Automatic suffix detection does what you expect (i.e. an output file ending in .dtb if selecting the DTB generation option, .yaml if selecting the yaml generation option and so on).
Given a source file in YAML foo.yaml
you generate a dtb file
with
# foo.yaml
foo: &foo
bar: true
baz:
- 12
- 8
- *foo
frob: [ "hello", "there" ]
Process with yamldt
$ yamldt -o foo.dtb foo.yaml
$ ls -l foo.dtb
-rw-rw-r-- 1 panto panto 153 Jul 27 18:50 foo.dtb
$ fdtdump foo.dtb
/dts-v1/;
// magic: 0xd00dfeed
// totalsize: 0xe1 (225)
// off_dt_struct: 0x38
// off_dt_strings: 0xc8
// off_mem_rsvmap: 0x28
// version: 17
// last_comp_version: 16
// boot_cpuid_phys: 0x0
// size_dt_strings: 0x19
// size_dt_struct: 0x90
/ {
foo {
bar;
baz = <0x0000000c 0x00000008 0x00000001>;
frob = "hello", "there";
phandle = <0x00000001>;
};
__symbols__ {
foo = "/foo";
};
};
The dts2yaml tool converts an existing dts/dtsi file to YAML format. It is capable of detecting macro usage so you can use it on both raw DTS files as well as DTS files that use the preprocessor.
dts2yaml [options] [input-file]
options are:
-o, --output Output file
-t, --tabs Set tab size (default 8)
-s, --shift Shift when outputing YAML (default 2)
-l, --leading Leading space for output
-d, --debug Enable debug messages
--silent Be really silent
--color [auto|off|on]
-r, --recursive Generate DTS/DTSI included files
-h, --help Help
--color [auto|off|on]
All the input files will be converted to yaml format; if no output option is given the output will be named according to the input filename. So foo.dts will be foo.yaml and foo.dtsi foo.yamli.
The recursive option is going to convert all included files as well that have a dts/dtsi extension.
To run the test-suite you will need a relative recent DTC compiler. YAML patches are not required anymore.
The test-suite first converts all the DTS files in the Linux kernel for
all architectures to YAML format using dts2yaml. Afterwards it compiles the YAML
files with yamldt
and the DTS files with DTC.
The resulting dtb files are bit-exact because the -C
option is used.
Run make check
to run the test suite.
Run make validate
to run the test suite and perform schema
validation checks. It is recommended to use the --keep-going
flag to continue checking even in the presence of validation
errors.
Currently out of 1379 DTS files, only 6 fail conversion;
exynos3250-monk exynos4412-trats2 exynos3250-rinato exynos5433-tm2
exynos5433-tm2e
All 6 use a complex pin mux macro declaration that is no possible to be automatically converted.
It is expected that the first thing a user of yamldt
would want
to do is to convert an existing DTS configuration to YAML.
The following example uses the beaglebone black and the am335x-boneblack.dts source as located in the port/ directory.
Compile the original DTS source with DTC
$ cc -E -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input \
-nostdinc -undef -x assembler-with-cpp -D__DTS__ am335x-boneblack.dts
| dtc -@ -q -I dts -O dtb - -o am335x-boneblack.dtc.dtb
Use dts2yaml to convert to yaml
$ dts2yaml -r am335x-boneblack.dts
$ ls *.yaml*
am335x-boneblack-common.yamli am335x-bone-common.yamli am33xx-clocks.yamli
am33xx.yamli tps65217.yamli
Note the recursive option automatically generates the dependent include files.
$ cc -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input \
-nostdinc -undef -x assembler-with-cpp -D__DTS__ am335x-boneblack.yaml | \
../../yamldt -C -@ - -o am335x-boneblack.dtb
$ ls -l *.dtb
-rw-rw-r-- 1 panto panto 50045 Jul 27 19:10 am335x-boneblack.dtb
-rw-rw-r-- 1 panto panto 50045 Jul 27 19:07 am335x-boneblack.dtc.dtb
$ md5sum *.dtb
3bcf838dc9c32c196f66870b7e6dfe81 am335x-boneblack.dtb
3bcf838dc9c32c196f66870b7e6dfe81 am335x-boneblack.dtc.dtb
Compiling without the -C option resulting in the same functional file but is slightly smaller due to better string table optimization.
$ yamldt am335x-boneblack.dtc.yaml -o am335x-boneblack.dtb
$ ls -l *.dtb
-rw-rw-r-- 1 panto panto 50003 Jul 27 19:12 am335x-boneblack.dtb
-rw-rw-r-- 1 panto panto 50045 Jul 27 19:07 am335x-boneblack.dtc.dtb
Plese note that the CPP command line is the same, so no changes to header files is required. dts2yaml is smart enough to detect macro usage and convert from the space delimited form that DTC uses to the comma one that YAML does.
yamldt supports almost all DTC options so using it as a DTC replacement is straightforward.
Using it for compiling in Linux Kernel DTS files is as simple as:
$ make DTC=yamldt dtbs
Note that by default the compatible option (-C) so if you need to be bit-compatible with DTC pass the -C flag as follows:
$ make DTC=yamldt DTC_FLAGS="-C"
Generally yamldt
is a little bit faster than dtc
and generates somewhat
smaller DTB files (if not using the -C option). However due to internally
tracking all parsed tokens and their locations in files it is capable
of generating accurate error messages that are parseable by all editors
for automatic movement to the error by a programmer's editor like vim.
For instance a file containing an error:
/* duplicate label */
/dts-v1/;
/ {
a: foo { foo; };
a: bar { bar; };
};
yamldt will generate the following error:
$ yamldt -I dts -o dts -C duplabel.dts
duplabel.dts:8:2: error: duplicate label a at "/bar"
a: bar {
^
duplabel.dts:4:2: error: duplicate label a is defined also at "/foo"
a: foo {
^
while dtc will generate:
$ yamldt -I dts -o dts -C duplabel.dts
dts: ERROR (duplicate_label): Duplicate label 'a' on /bar and /foo
ERROR: Input tree has errors, aborting (use -f to force output)
Known features of DTC that are not available are:
- Only version 17 DT blobs are supported. Passing a -V argument requesting a different one will result in error.
- Assembly output is not supported.
- Assembly and filesystem inputs are not supported.
- The sort option is not yet supported.
- The warning and error options are accepted but they don't do anything. yamldt uses a validation schema for application specific error and warnings so those options are superfluous.
The conversion from DTS is straight forward:
For example:
/* foo.dts */
/ {
foo = "bar";
#cells = <2>;
phandle-ref = <&ref 1>;
ref: refnode { baz; };
};
# foo.yaml
foo: "bar"
"#cells": 2
phandle-ref: [ *ref 1 ]
refnode: &ref
baz: true
Major differences between DTS & YAML:
- YAML is using # as a comment marker, therefore properties with a # prefix get converted to explicit string literals:
#cells = <0>;
to YAML
"#cells": 0
- YAML is indentation sensitive, but it is a JSON superset. Therefore the following are equivalent:
foo: [ 1, 2 ]
foo:
- 1
- 2
- The labels in DTS are defined and used as
foo: node { baz; };
bar = <&foo>;
In YAML the equivalent methods are called anchors and are defined as follows:
node: &foo
baz: true
bar: *foo
- Explicit tags in YAML are using !, so the following
mac = [ 0 1 2 3 4 5 ];
Is used like this in YAML
mac: !int8 [ 0, 1, 2, 3, 4, 5 ]
- DTS uses spaces to seperate array elements, YAML uses either indentation or commas in JSON form. Note that yamldt is smart enough to detect the DTS form and automatically convert in most cases.
pinmux = <0x00 0x01>;
In YAML:
pinmux:
- 0x00
- 0x01
or
pinmux: [ 0x00, 0x01 ]
- Path references (<&/foo>) automatically are converted to pseudo YAML anchors (of the form yaml_pseudo__n__)
/ {
foo { bar; };
};
ref = <&/foo>;
In YAML:
foo: &yaml_pseudo__0__
ref: *foo
-
Integer expression evaluation, similar in manner to that which the CPP preprocessor performs, is available. This is required in order for macros to work. For example:
Given the following two files
/* add.h */
#define ADD(x, y) ((x) + (y))
# macro-use.yaml
#include "add.h"
result: ADD(10, 12)
The output after the cpp preprocessor pass:
result: ((10) + (12))
Parsing with yamldt
to DTB will generate a property
result = <22>;
The Beaglebone Black DTS am335x-bone-common.dtsi
source file
/*
* Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/ {
cpus {
cpu@0 {
cpu0-supply = <&dcdc2_reg>;
};
};
memory@80000000 {
device_type = "memory";
reg = <0x80000000 0x10000000>; /* 256 MB */
};
chosen {
stdout-path = &uart0;
};
leds {
pinctrl-names = "default";
pinctrl-0 = <&user_leds_s0>;
compatible = "gpio-leds";
led2 {
label = "beaglebone:green:heartbeat";
gpios = <&gpio1 21 GPIO_ACTIVE_HIGH>;
linux,default-trigger = "heartbeat";
default-state = "off";
};
led3 {
label = "beaglebone:green:mmc0";
gpios = <&gpio1 22 GPIO_ACTIVE_HIGH>;
linux,default-trigger = "mmc0";
default-state = "off";
};
led4 {
label = "beaglebone:green:usr2";
gpios = <&gpio1 23 GPIO_ACTIVE_HIGH>;
linux,default-trigger = "cpu0";
default-state = "off";
};
led5 {
label = "beaglebone:green:usr3";
gpios = <&gpio1 24 GPIO_ACTIVE_HIGH>;
linux,default-trigger = "mmc1";
default-state = "off";
};
};
vmmcsd_fixed: fixedregulator0 {
compatible = "regulator-fixed";
regulator-name = "vmmcsd_fixed";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
};
};
&am33xx_pinmux {
pinctrl-names = "default";
pinctrl-0 = <&clkout2_pin>;
user_leds_s0: user_leds_s0 {
pinctrl-single,pins = <
AM33XX_IOPAD(0x854, PIN_OUTPUT_PULLDOWN | MUX_MODE7) /* gpmc_a5.gpio1_21 */
AM33XX_IOPAD(0x858, PIN_OUTPUT_PULLUP | MUX_MODE7) /* gpmc_a6.gpio1_22 */
AM33XX_IOPAD(0x85c, PIN_OUTPUT_PULLDOWN | MUX_MODE7) /* gpmc_a7.gpio1_23 */
AM33XX_IOPAD(0x860, PIN_OUTPUT_PULLUP | MUX_MODE7) /* gpmc_a8.gpio1_24 */
>;
};
i2c0_pins: pinmux_i2c0_pins {
pinctrl-single,pins = <
AM33XX_IOPAD(0x988, PIN_INPUT_PULLUP | MUX_MODE0) /* i2c0_sda.i2c0_sda */
AM33XX_IOPAD(0x98c, PIN_INPUT_PULLUP | MUX_MODE0) /* i2c0_scl.i2c0_scl */
>;
};
i2c2_pins: pinmux_i2c2_pins {
pinctrl-single,pins = <
AM33XX_IOPAD(0x978, PIN_INPUT_PULLUP | MUX_MODE3) /* uart1_ctsn.i2c2_sda */
AM33XX_IOPAD(0x97c, PIN_INPUT_PULLUP | MUX_MODE3) /* uart1_rtsn.i2c2_scl */
>;
};
uart0_pins: pinmux_uart0_pins {
pinctrl-single,pins = <
AM33XX_IOPAD(0x970, PIN_INPUT_PULLUP | MUX_MODE0) /* uart0_rxd.uart0_rxd */
AM33XX_IOPAD(0x974, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /* uart0_txd.uart0_txd */
>;
};
clkout2_pin: pinmux_clkout2_pin {
pinctrl-single,pins = <
AM33XX_IOPAD(0x9b4, PIN_OUTPUT_PULLDOWN | MUX_MODE3) /* xdma_event_intr1.clkout2 */
>;
};
cpsw_default: cpsw_default {
pinctrl-single,pins = <
/* Slave 1 */
AM33XX_IOPAD(0x910, PIN_INPUT_PULLUP | MUX_MODE0) /* mii1_rxerr.mii1_rxerr */
AM33XX_IOPAD(0x914, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /* mii1_txen.mii1_txen */
AM33XX_IOPAD(0x918, PIN_INPUT_PULLUP | MUX_MODE0) /* mii1_rxdv.mii1_rxdv */
AM33XX_IOPAD(0x91c, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /* mii1_txd3.mii1_txd3 */
AM33XX_IOPAD(0x920, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /* mii1_txd2.mii1_txd2 */
AM33XX_IOPAD(0x924, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /* mii1_txd1.mii1_txd1 */
AM33XX_IOPAD(0x928, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /* mii1_txd0.mii1_txd0 */
AM33XX_IOPAD(0x92c, PIN_INPUT_PULLUP | MUX_MODE0) /* mii1_txclk.mii1_txclk */
AM33XX_IOPAD(0x930, PIN_INPUT_PULLUP | MUX_MODE0) /* mii1_rxclk.mii1_rxclk */
AM33XX_IOPAD(0x934, PIN_INPUT_PULLUP | MUX_MODE0) /* mii1_rxd3.mii1_rxd3 */
AM33XX_IOPAD(0x938, PIN_INPUT_PULLUP | MUX_MODE0) /* mii1_rxd2.mii1_rxd2 */
AM33XX_IOPAD(0x93c, PIN_INPUT_PULLUP | MUX_MODE0) /* mii1_rxd1.mii1_rxd1 */
AM33XX_IOPAD(0x940, PIN_INPUT_PULLUP | MUX_MODE0) /* mii1_rxd0.mii1_rxd0 */
>;
};
cpsw_sleep: cpsw_sleep {
pinctrl-single,pins = <
/* Slave 1 reset value */
AM33XX_IOPAD(0x910, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x914, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x918, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x91c, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x920, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x924, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x928, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x92c, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x930, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x934, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x938, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x93c, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x940, PIN_INPUT_PULLDOWN | MUX_MODE7)
>;
};
davinci_mdio_default: davinci_mdio_default {
pinctrl-single,pins = <
/* MDIO */
AM33XX_IOPAD(0x948, PIN_INPUT_PULLUP | SLEWCTRL_FAST | MUX_MODE0) /* mdio_data.mdio_data */
AM33XX_IOPAD(0x94c, PIN_OUTPUT_PULLUP | MUX_MODE0) /* mdio_clk.mdio_clk */
>;
};
davinci_mdio_sleep: davinci_mdio_sleep {
pinctrl-single,pins = <
/* MDIO reset value */
AM33XX_IOPAD(0x948, PIN_INPUT_PULLDOWN | MUX_MODE7)
AM33XX_IOPAD(0x94c, PIN_INPUT_PULLDOWN | MUX_MODE7)
>;
};
mmc1_pins: pinmux_mmc1_pins {
pinctrl-single,pins = <
AM33XX_IOPAD(0x960, PIN_INPUT | MUX_MODE7) /* GPIO0_6 */
>;
};
emmc_pins: pinmux_emmc_pins {
pinctrl-single,pins = <
AM33XX_IOPAD(0x880, PIN_INPUT_PULLUP | MUX_MODE2) /* gpmc_csn1.mmc1_clk */
AM33XX_IOPAD(0x884, PIN_INPUT_PULLUP | MUX_MODE2) /* gpmc_csn2.mmc1_cmd */
AM33XX_IOPAD(0x800, PIN_INPUT_PULLUP | MUX_MODE1) /* gpmc_ad0.mmc1_dat0 */
AM33XX_IOPAD(0x804, PIN_INPUT_PULLUP | MUX_MODE1) /* gpmc_ad1.mmc1_dat1 */
AM33XX_IOPAD(0x808, PIN_INPUT_PULLUP | MUX_MODE1) /* gpmc_ad2.mmc1_dat2 */
AM33XX_IOPAD(0x80c, PIN_INPUT_PULLUP | MUX_MODE1) /* gpmc_ad3.mmc1_dat3 */
AM33XX_IOPAD(0x810, PIN_INPUT_PULLUP | MUX_MODE1) /* gpmc_ad4.mmc1_dat4 */
AM33XX_IOPAD(0x814, PIN_INPUT_PULLUP | MUX_MODE1) /* gpmc_ad5.mmc1_dat5 */
AM33XX_IOPAD(0x818, PIN_INPUT_PULLUP | MUX_MODE1) /* gpmc_ad6.mmc1_dat6 */
AM33XX_IOPAD(0x81c, PIN_INPUT_PULLUP | MUX_MODE1) /* gpmc_ad7.mmc1_dat7 */
>;
};
};
&uart0 {
pinctrl-names = "default";
pinctrl-0 = <&uart0_pins>;
status = "okay";
};
&usb {
status = "okay";
};
&usb_ctrl_mod {
status = "okay";
};
&usb0_phy {
status = "okay";
};
&usb1_phy {
status = "okay";
};
&usb0 {
status = "okay";
dr_mode = "peripheral";
interrupts-extended = <&intc 18 &tps 0>;
interrupt-names = "mc", "vbus";
};
&usb1 {
status = "okay";
dr_mode = "host";
};
&cppi41dma {
status = "okay";
};
&i2c0 {
pinctrl-names = "default";
pinctrl-0 = <&i2c0_pins>;
status = "okay";
clock-frequency = <400000>;
tps: tps@24 {
reg = <0x24>;
};
baseboard_eeprom: baseboard_eeprom@50 {
compatible = "atmel,24c256";
reg = <0x50>;
#address-cells = <1>;
#size-cells = <1>;
baseboard_data: baseboard_data@0 {
reg = <0 0x100>;
};
};
};
&i2c2 {
pinctrl-names = "default";
pinctrl-0 = <&i2c2_pins>;
status = "okay";
clock-frequency = <100000>;
cape_eeprom0: cape_eeprom0@54 {
compatible = "atmel,24c256";
reg = <0x54>;
#address-cells = <1>;
#size-cells = <1>;
cape0_data: cape_data@0 {
reg = <0 0x100>;
};
};
cape_eeprom1: cape_eeprom1@55 {
compatible = "atmel,24c256";
reg = <0x55>;
#address-cells = <1>;
#size-cells = <1>;
cape1_data: cape_data@0 {
reg = <0 0x100>;
};
};
cape_eeprom2: cape_eeprom2@56 {
compatible = "atmel,24c256";
reg = <0x56>;
#address-cells = <1>;
#size-cells = <1>;
cape2_data: cape_data@0 {
reg = <0 0x100>;
};
};
cape_eeprom3: cape_eeprom3@57 {
compatible = "atmel,24c256";
reg = <0x57>;
#address-cells = <1>;
#size-cells = <1>;
cape3_data: cape_data@0 {
reg = <0 0x100>;
};
};
};
/include/ "tps65217.dtsi"
&tps {
/*
* Configure pmic to enter OFF-state instead of SLEEP-state ("RTC-only
* mode") at poweroff. Most BeagleBone versions do not support RTC-only
* mode and risk hardware damage if this mode is entered.
*
* For details, see linux-omap mailing list May 2015 thread
* [PATCH] ARM: dts: am335x-bone* enable pmic-shutdown-controller
* In particular, messages:
* http://www.spinics.net/lists/linux-omap/msg118585.html
* http://www.spinics.net/lists/linux-omap/msg118615.html
*
* You can override this later with
* &tps { /delete-property/ ti,pmic-shutdown-controller; }
* if you want to use RTC-only mode and made sure you are not affected
* by the hardware problems. (Tip: double-check by performing a current
* measurement after shutdown: it should be less than 1 mA.)
*/
interrupts = <7>; /* NMI */
interrupt-parent = <&intc>;
ti,pmic-shutdown-controller;
charger {
interrupts = <0>, <1>;
interrupt-names = "USB", "AC";
status = "okay";
};
pwrbutton {
interrupts = <2>;
status = "okay";
};
regulators {
dcdc1_reg: regulator@0 {
regulator-name = "vdds_dpr";
regulator-always-on;
};
dcdc2_reg: regulator@1 {
/* VDD_MPU voltage limits 0.95V - 1.26V with +/-4% tolerance */
regulator-name = "vdd_mpu";
regulator-min-microvolt = <925000>;
regulator-max-microvolt = <1351500>;
regulator-boot-on;
regulator-always-on;
};
dcdc3_reg: regulator@2 {
/* VDD_CORE voltage limits 0.95V - 1.1V with +/-4% tolerance */
regulator-name = "vdd_core";
regulator-min-microvolt = <925000>;
regulator-max-microvolt = <1150000>;
regulator-boot-on;
regulator-always-on;
};
ldo1_reg: regulator@3 {
regulator-name = "vio,vrtc,vdds";
regulator-always-on;
};
ldo2_reg: regulator@4 {
regulator-name = "vdd_3v3aux";
regulator-always-on;
};
ldo3_reg: regulator@5 {
regulator-name = "vdd_1v8";
regulator-always-on;
};
ldo4_reg: regulator@6 {
regulator-name = "vdd_3v3a";
regulator-always-on;
};
};
};
&cpsw_emac0 {
phy_id = <&davinci_mdio>, <0>;
phy-mode = "mii";
};
&mac {
slaves = <1>;
pinctrl-names = "default", "sleep";
pinctrl-0 = <&cpsw_default>;
pinctrl-1 = <&cpsw_sleep>;
status = "okay";
};
&davinci_mdio {
pinctrl-names = "default", "sleep";
pinctrl-0 = <&davinci_mdio_default>;
pinctrl-1 = <&davinci_mdio_sleep>;
status = "okay";
};
&mmc1 {
status = "okay";
bus-width = <0x4>;
pinctrl-names = "default";
pinctrl-0 = <&mmc1_pins>;
cd-gpios = <&gpio0 6 GPIO_ACTIVE_LOW>;
};
&aes {
status = "okay";
};
&sham {
status = "okay";
};
&rtc {
clocks = <&clk_32768_ck>, <&clkdiv32k_ick>;
clock-names = "ext-clk", "int-clk";
};
Is converted to the am335x-bone-common.yaml
file
# Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 2 as
# published by the Free Software Foundation.
cpus:
cpu@0:
cpu0-supply: *dcdc2_reg
memory@80000000:
device_type: "memory"
reg: [ 0x80000000, 0x10000000 ] # 256 MB
chosen:
stdout-path: !pathref uart0
leds:
pinctrl-names: "default"
pinctrl-0: *user_leds_s0
compatible: "gpio-leds"
led2:
label: "beaglebone:green:heartbeat"
gpios: [ *gpio1, 21, GPIO_ACTIVE_HIGH ]
linux,default-trigger: "heartbeat"
default-state: "off"
led3:
label: "beaglebone:green:mmc0"
gpios: [ *gpio1, 22, GPIO_ACTIVE_HIGH ]
linux,default-trigger: "mmc0"
default-state: "off"
led4:
label: "beaglebone:green:usr2"
gpios: [ *gpio1, 23, GPIO_ACTIVE_HIGH ]
linux,default-trigger: "cpu0"
default-state: "off"
led5:
label: "beaglebone:green:usr3"
gpios: [ *gpio1, 24, GPIO_ACTIVE_HIGH ]
linux,default-trigger: "mmc1"
default-state: "off"
fixedregulator0: &vmmcsd_fixed
compatible: "regulator-fixed"
regulator-name: "vmmcsd_fixed"
regulator-min-microvolt: 3300000
regulator-max-microvolt: 3300000
*am33xx_pinmux:
pinctrl-names: "default"
pinctrl-0: *clkout2_pin
user_leds_s0: &user_leds_s0
pinctrl-single,pins:
- AM33XX_IOPAD(0x854, PIN_OUTPUT_PULLDOWN | MUX_MODE7) # gpmc_a5.gpio1_21
- AM33XX_IOPAD(0x858, PIN_OUTPUT_PULLUP | MUX_MODE7) # gpmc_a6.gpio1_22
- AM33XX_IOPAD(0x85c, PIN_OUTPUT_PULLDOWN | MUX_MODE7) # gpmc_a7.gpio1_23
- AM33XX_IOPAD(0x860, PIN_OUTPUT_PULLUP | MUX_MODE7) # gpmc_a8.gpio1_24
pinmux_i2c0_pins: &i2c0_pins
pinctrl-single,pins:
- AM33XX_IOPAD(0x988, PIN_INPUT_PULLUP | MUX_MODE0) # i2c0_sda.i2c0_sda
- AM33XX_IOPAD(0x98c, PIN_INPUT_PULLUP | MUX_MODE0) # i2c0_scl.i2c0_scl
pinmux_i2c2_pins: &i2c2_pins
pinctrl-single,pins:
- AM33XX_IOPAD(0x978, PIN_INPUT_PULLUP | MUX_MODE3) # uart1_ctsn.i2c2_sda
- AM33XX_IOPAD(0x97c, PIN_INPUT_PULLUP | MUX_MODE3) # uart1_rtsn.i2c2_scl
pinmux_uart0_pins: &uart0_pins
pinctrl-single,pins:
- AM33XX_IOPAD(0x970, PIN_INPUT_PULLUP | MUX_MODE0) # uart0_rxd.uart0_rxd
- AM33XX_IOPAD(0x974, PIN_OUTPUT_PULLDOWN | MUX_MODE0) # uart0_txd.uart0_txd
pinmux_clkout2_pin: &clkout2_pin
pinctrl-single,pins:
- AM33XX_IOPAD(0x9b4, PIN_OUTPUT_PULLDOWN | MUX_MODE3) # xdma_event_intr1.clkout2
cpsw_default: &cpsw_default
pinctrl-single,pins:
# Slave 1
- AM33XX_IOPAD(0x910, PIN_INPUT_PULLUP | MUX_MODE0) # mii1_rxerr.mii1_rxerr
- AM33XX_IOPAD(0x914, PIN_OUTPUT_PULLDOWN | MUX_MODE0) # mii1_txen.mii1_txen
- AM33XX_IOPAD(0x918, PIN_INPUT_PULLUP | MUX_MODE0) # mii1_rxdv.mii1_rxdv
- AM33XX_IOPAD(0x91c, PIN_OUTPUT_PULLDOWN | MUX_MODE0) # mii1_txd3.mii1_txd3
- AM33XX_IOPAD(0x920, PIN_OUTPUT_PULLDOWN | MUX_MODE0) # mii1_txd2.mii1_txd2
- AM33XX_IOPAD(0x924, PIN_OUTPUT_PULLDOWN | MUX_MODE0) # mii1_txd1.mii1_txd1
- AM33XX_IOPAD(0x928, PIN_OUTPUT_PULLDOWN | MUX_MODE0) # mii1_txd0.mii1_txd0
- AM33XX_IOPAD(0x92c, PIN_INPUT_PULLUP | MUX_MODE0) # mii1_txclk.mii1_txclk
- AM33XX_IOPAD(0x930, PIN_INPUT_PULLUP | MUX_MODE0) # mii1_rxclk.mii1_rxclk
- AM33XX_IOPAD(0x934, PIN_INPUT_PULLUP | MUX_MODE0) # mii1_rxd3.mii1_rxd3
- AM33XX_IOPAD(0x938, PIN_INPUT_PULLUP | MUX_MODE0) # mii1_rxd2.mii1_rxd2
- AM33XX_IOPAD(0x93c, PIN_INPUT_PULLUP | MUX_MODE0) # mii1_rxd1.mii1_rxd1
- AM33XX_IOPAD(0x940, PIN_INPUT_PULLUP | MUX_MODE0) # mii1_rxd0.mii1_rxd0
cpsw_sleep: &cpsw_sleep
pinctrl-single,pins:
# Slave 1 reset value
- AM33XX_IOPAD(0x910, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x914, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x918, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x91c, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x920, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x924, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x928, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x92c, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x930, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x934, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x938, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x93c, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x940, PIN_INPUT_PULLDOWN | MUX_MODE7)
davinci_mdio_default: &davinci_mdio_default
pinctrl-single,pins:
# MDIO
- AM33XX_IOPAD(0x948, PIN_INPUT_PULLUP | SLEWCTRL_FAST | MUX_MODE0) # mdio_data.mdio_data
- AM33XX_IOPAD(0x94c, PIN_OUTPUT_PULLUP | MUX_MODE0) # mdio_clk.mdio_clk
davinci_mdio_sleep: &davinci_mdio_sleep
pinctrl-single,pins:
# MDIO reset value
- AM33XX_IOPAD(0x948, PIN_INPUT_PULLDOWN | MUX_MODE7)
- AM33XX_IOPAD(0x94c, PIN_INPUT_PULLDOWN | MUX_MODE7)
pinmux_mmc1_pins: &mmc1_pins
pinctrl-single,pins:
- AM33XX_IOPAD(0x960, PIN_INPUT | MUX_MODE7) # GPIO0_6
pinmux_emmc_pins: &emmc_pins
pinctrl-single,pins:
- AM33XX_IOPAD(0x880, PIN_INPUT_PULLUP | MUX_MODE2) # gpmc_csn1.mmc1_clk
- AM33XX_IOPAD(0x884, PIN_INPUT_PULLUP | MUX_MODE2) # gpmc_csn2.mmc1_cmd
- AM33XX_IOPAD(0x800, PIN_INPUT_PULLUP | MUX_MODE1) # gpmc_ad0.mmc1_dat0
- AM33XX_IOPAD(0x804, PIN_INPUT_PULLUP | MUX_MODE1) # gpmc_ad1.mmc1_dat1
- AM33XX_IOPAD(0x808, PIN_INPUT_PULLUP | MUX_MODE1) # gpmc_ad2.mmc1_dat2
- AM33XX_IOPAD(0x80c, PIN_INPUT_PULLUP | MUX_MODE1) # gpmc_ad3.mmc1_dat3
- AM33XX_IOPAD(0x810, PIN_INPUT_PULLUP | MUX_MODE1) # gpmc_ad4.mmc1_dat4
- AM33XX_IOPAD(0x814, PIN_INPUT_PULLUP | MUX_MODE1) # gpmc_ad5.mmc1_dat5
- AM33XX_IOPAD(0x818, PIN_INPUT_PULLUP | MUX_MODE1) # gpmc_ad6.mmc1_dat6
- AM33XX_IOPAD(0x81c, PIN_INPUT_PULLUP | MUX_MODE1) # gpmc_ad7.mmc1_dat7
*uart0:
pinctrl-names: "default"
pinctrl-0: *uart0_pins
status: "okay"
*usb:
status: "okay"
*usb_ctrl_mod:
status: "okay"
*usb0_phy:
status: "okay"
*usb1_phy:
status: "okay"
*usb0:
status: "okay"
dr_mode: "peripheral"
interrupts-extended: [ *intc , 18, *tps, 0 ]
interrupt-names: [ "mc", "vbus" ]
*usb1:
status: "okay"
dr_mode: "host"
*cppi41dma:
status: "okay"
*i2c0:
pinctrl-names: "default"
pinctrl-0: *i2c0_pins
status: "okay"
clock-frequency: 400000
tps@24: &tps
reg: 0x24
baseboard_eeprom@50: &baseboard_eeprom
compatible: "atmel,24c256"
reg: 0x50
"#address-cells": 1
"#size-cells": 1
baseboard_data@0: &baseboard_data
reg: [ 0, 0x100 ]
*i2c2:
pinctrl-names: "default"
pinctrl-0: *i2c2_pins
status: "okay"
clock-frequency: 100000
cape_eeprom0@54: &cape_eeprom0
compatible: "atmel,24c256"
reg: 0x54
"#address-cells": 1
"#size-cells": 1
cape_data@0: &cape0_data
reg: [ 0, 0x100 ]
cape_eeprom1@55: &cape_eeprom1
compatible: "atmel,24c256"
reg: 0x55
"#address-cells": 1
"#size-cells": 1
cape_data@0: &cape1_data
reg: [ 0, 0x100 ]
cape_eeprom2@56: &cape_eeprom2
compatible: "atmel,24c256"
reg: 0x56
"#address-cells": 1
"#size-cells": 1
cape_data@0: &cape2_data
reg: [ 0, 0x100 ]
cape_eeprom3@57: &cape_eeprom3
compatible: "atmel,24c256"
reg: 0x57
"#address-cells": 1
"#size-cells": 1
cape_data@0: &cape3_data
reg: [ 0, 0x100 ]
#include "tps65217.yaml"
*tps:
# Configure pmic to enter OFF-state instead of SLEEP-state ("RTC-only
# mode") at poweroff. Most BeagleBone versions do not support RTC-only
# mode and risk hardware damage if this mode is entered.
#
# For details, see linux-omap mailing list May 2015 thread
# [PATCH] ARM: dts: am335x-bone* enable pmic-shutdown-controller
# In particular, messages:
# http://www.spinics.net/lists/linux-omap/msg118585.html
# http://www.spinics.net/lists/linux-omap/msg118615.html
#
# You can override this later with
# *tps:
# ti,pmic-shutdown-controller: null
#
# If you want to use RTC-only mode and made sure you are not affected
# by the hardware problems. (Tip: double-check by performing a current
# measurement after shutdown: it should be less than 1 mA.)
interrupts: 7
interrupt-parent: *intc
ti,pmic-shutdown-controller: true
charger:
compatible: "ti,tps65217-charger"
status: "okay"
interrupts: [ 0, 1 ]
interrupt-names: [ "USB", "AC" ]
pwrbutton:
compatible: "ti,tps65217-pwrbutton"
status: "okay"
interrupts: 2
regulators:
"#address-cells": 1
"#size-cells": 0
regulator@0: &dcdc1_reg
regulator-name: "vdds_dpr"
regulator-always-on: true
regulator@1: &dcdc2_reg
# VDD_MPU voltage limits 0.95V - 1.26V with +/-4% tolerance
regulator-name: "vdd_mpu"
regulator-min-microvolt: 925000
regulator-max-microvolt: 1351500
regulator-boot-on: true
regulator-always-on: true
regulator@2: &dcdc3_reg
# VDD_CORE voltage limits 0.95V - 1.1V with +/-4% tolerance
regulator-name: "vdd_core"
regulator-min-microvolt: 925000
regulator-max-microvolt: 1150000
regulator-boot-on: true
regulator-always-on: true
regulator@3: &ldo1_reg
regulator-name: "vio,vrtc,vdds"
regulator-always-on: true
regulator@4: &ldo2_reg
regulator-name: "vdd_3v3aux"
regulator-always-on: true
regulator@5: &ldo3_reg
regulator-name: "vdd_1v8"
regulator-always-on: true
regulator@6: &ldo4_reg
regulator-name: "vdd_3v3a"
regulator-always-on: true
*cpsw_emac0:
phy_id: [ *davinci_mdio, 0x00000000 ]
phy-mode: "mii"
*mac:
slaves: 1
pinctrl-names: [ "default", "sleep" ]
pinctrl-0: *cpsw_default
pinctrl-1: *cpsw_sleep
status: "okay"
*davinci_mdio:
pinctrl-names: [ "default", "sleep" ]
pinctrl-0: *davinci_mdio_default
pinctrl-1: *davinci_mdio_sleep
status: "okay"
*mmc1:
status: "okay"
bus-width: 4
pinctrl-names: "default"
pinctrl-0: *mmc1_pins
cd-gpios: [ *gpio0, 6, GPIO_ACTIVE_LOW ]
*aes:
status: "okay"
*sham:
status: "okay"
*rtc:
clocks: [ *clk_32768_ck, *clkdiv32k_ick ]
clock-names: [ "ext-clk", "int-clk" ]
For this example we're going to use port/am335x-boneblack-dev/ An extra rule-check.yaml file has been added where validation tests can be performed.
That file contains a single jedec,spi-nor device and when we validate:
*spi0:
m25p80@0:
compatible: "s25fl256s1"
spi-max-frequency: 76800000
reg: 0
spi-tx-bus-width: 1
spi-rx-bus-width: 4
"#address-cells": 1
"#size-cells": 1
This is a valid device node, so running validate produces the following:
$ make validate
cc -E -MT am33xx.cpp.yaml -MMD -MP -MF am33xx.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ am33xx.yaml >am33xx.cpp.yaml
cc -E -MT am33xx-clocks.cpp.yaml -MMD -MP -MF am33xx-clocks.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ am33xx-clocks.yaml >am33xx-clocks.cpp.yaml
cc -E -MT am335x-bone-common.cpp.yaml -MMD -MP -MF am335x-bone-common.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ am335x-bone-common.yaml >am335x-bone-common.cpp.yaml
cc -E -MT am335x-boneblack-common.cpp.yaml -MMD -MP -MF am335x-boneblack-common.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ am335x-boneblack-common.yaml >am335x-boneblack-common.cpp.yaml
cc -E -MT am335x-boneblack.cpp.yaml -MMD -MP -MF am335x-boneblack.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ am335x-boneblack.yaml >am335x-boneblack.cpp.yaml
cc -E -MT rule-check.cpp.yaml -MMD -MP -MF rule-check.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ rule-check.yaml >rule-check.cpp.yaml
../../yamldt -g ../../validate/schema/codegen.yaml -S ../../validate/bindings/ -y am33xx.cpp.yaml am33xx-clocks.cpp.yaml am335x-bone-common.cpp.yaml am335x-boneblack-common.cpp.yaml am335x-boneblack.cpp.yaml rule-check.cpp.yaml -o am335x-boneblack-rules.pure.yaml
jedec,spi-nor: /ocp/spi@48030000/m25p80@0 OK
Note the last line. It means the node was checked and was found OK.
Editing the rule-check.yaml file, let's introduce a couple of errors.
The following output is generated by commenting out the reg property # reg: 0
$ make validate
cc -E -MT rule-check.cpp.yaml -MMD -MP -MF rule-check.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ rule-check.yaml >rule-check.cpp.yaml
../../yamldt -g ../../validate/schema/codegen.yaml -S ../../validate/bindings/ -y am33xx.cpp.yaml am33xx-clocks.cpp.yaml am335x-bone-common.cpp.yaml am335x-boneblack-common.cpp.yaml am335x-boneblack.cpp.yaml rule-check.cpp.yaml -o am335x-boneblack-rules.pure.yaml
jedec,spi-nor: /ocp/spi@48030000/m25p80@0 FAIL (-2004)
../../validate/bindings/jedec,spi-nor.yaml:15:5: error: missing property: property was defined at /jedec,spi-nor/properties/reg
reg:
^~~~
Note the descriptive error and the pointer to the missing property in the schema.
Making another error, assign a string to the reg property reg: "string"
$ make validate
$ make validate
cc -E -MT rule-check.cpp.yaml -MMD -MP -MF rule-check.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ rule-check.yaml >rule-check.cpp.yaml
../../yamldt -g ../../validate/schema/codegen.yaml -S ../../validate/bindings/ -y am33xx.cpp.yaml am33xx-clocks.cpp.yaml am335x-bone-common.cpp.yaml am335x-boneblack-common.cpp.yaml am335x-boneblack.cpp.yaml rule-check.cpp.yaml -o am335x-boneblack-rules.pure.yaml
jedec,spi-nor: /ocp/spi@48030000/m25p80@0 FAIL (-3004)
rule-check.yaml:8:10: error: bad property type
reg: "string"
^~~~~~~~
../../validate/bindings/jedec,spi-nor.yaml:15:5: error: property was defined at /jedec,spi-nor/properties/reg
reg:
^~~~
Note the message about the type error and the pointer to the place where the reg property was defined.
Finally, let's make an error that violates a constraint.
Change the spi-tx-bus-width
value to 3.
$ make validate
cc -E -MT rule-check.cpp.yaml -MMD -MP -MF rule-check.o.Yd -I ./ -I ../../port -I ../../include -I ../../include/dt-bindings/input -nostdinc -undef -x assembler-with-cpp -D__DTS__ -D__YAML__ rule-check.yaml >rule-check.cpp.yaml
../../yamldt -g ../../validate/schema/codegen.yaml -S ../../validate/bindings/ -y am33xx.cpp.yaml am33xx-clocks.cpp.yaml am335x-bone-common.cpp.yaml am335x-boneblack-common.cpp.yaml am335x-boneblack.cpp.yaml rule-check.cpp.yaml -o am335x-boneblack-rules.pure.yaml
jedec,spi-nor: /ocp/spi@48030000/m25p80@0 FAIL (-1018)
rule-check.yaml:9:23: error: constraint rule failed
spi-tx-bus-width: 3
^
../../validate/bindings/spi/spi-slave.yaml:77:19: error: constraint that fails was defined here
constraint: v == 1 || v == 2 || v == 4
^~~~~~~~~~~~~~~~~~~~~~~~~~
../../validate/bindings/spi/spi-slave.yaml:74:5: error: property was defined at /spi-slave/properties/spi-tx-bus-width
spi-tx-bus-width:
Note how the offending value is highlighted. The offending constraint and property definition are listed too.