Skip to content

Commit

Permalink
feature/introducting-conversational-retrieval-tool-agent (FlowiseAI#2430
Browse files Browse the repository at this point in the history
)

* introducting openai-conversational-retriever-agent

* fix lint

* fix build

* rename + update description

* changing agent base from openai to tool agent

* adding author for community agent
  • Loading branch information
niztal authored and patrickalvesexperian committed Sep 3, 2024
1 parent 9e8de50 commit a857119
Show file tree
Hide file tree
Showing 3 changed files with 287 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
import { flatten } from 'lodash'
import { BaseMessage } from '@langchain/core/messages'
import { ChainValues } from '@langchain/core/utils/types'
import { RunnableSequence } from '@langchain/core/runnables'
import { BaseChatModel } from '@langchain/core/language_models/chat_models'
import { ChatPromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate, PromptTemplate } from '@langchain/core/prompts'
import { formatToOpenAIToolMessages } from 'langchain/agents/format_scratchpad/openai_tools'
import { getBaseClasses } from '../../../src/utils'
import { type ToolsAgentStep } from 'langchain/agents/openai/output_parser'
import { FlowiseMemory, ICommonObject, INode, INodeData, INodeParams, IUsedTool, IVisionChatModal } from '../../../src/Interface'
import { ConsoleCallbackHandler, CustomChainHandler, additionalCallbacks } from '../../../src/handler'
import { AgentExecutor, ToolCallingAgentOutputParser } from '../../../src/agents'
import { Moderation, checkInputs, streamResponse } from '../../moderation/Moderation'
import { formatResponse } from '../../outputparsers/OutputParserHelpers'
import type { Document } from '@langchain/core/documents'
import { BaseRetriever } from '@langchain/core/retrievers'
import { RESPONSE_TEMPLATE } from '../../chains/ConversationalRetrievalQAChain/prompts'
import { addImagesToMessages, llmSupportsVision } from '../../../src/multiModalUtils'

class ConversationalRetrievalToolAgent_Agents implements INode {
label: string
name: string
author: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
sessionId?: string
badge?: string

constructor(fields?: { sessionId?: string }) {
this.label = 'Conversational Retrieval Tool Agent'
this.name = 'conversationalRetrievalToolAgent'
this.author = 'niztal(falkor)'
this.version = 1.0
this.type = 'AgentExecutor'
this.category = 'Agents'
this.icon = 'toolAgent.png'
this.description = `Agent that calls a vector store retrieval and uses Function Calling to pick the tools and args to call`
this.baseClasses = [this.type, ...getBaseClasses(AgentExecutor)]
this.badge = 'NEW'
this.inputs = [
{
label: 'Tools',
name: 'tools',
type: 'Tool',
list: true
},
{
label: 'Memory',
name: 'memory',
type: 'BaseChatMemory'
},
{
label: 'Tool Calling Chat Model',
name: 'model',
type: 'BaseChatModel',
description:
'Only compatible with models that are capable of function calling. ChatOpenAI, ChatMistral, ChatAnthropic, ChatVertexAI'
},
{
label: 'System Message',
name: 'systemMessage',
type: 'string',
description: 'Taking the rephrased question, search for answer from the provided context',
warning: 'Prompt must include input variable: {context}',
rows: 4,
additionalParams: true,
optional: true,
default: RESPONSE_TEMPLATE
},
{
label: 'Input Moderation',
description: 'Detect text that could generate harmful output and prevent it from being sent to the language model',
name: 'inputModeration',
type: 'Moderation',
optional: true,
list: true
},
{
label: 'Max Iterations',
name: 'maxIterations',
type: 'number',
optional: true,
additionalParams: true
},
{
label: 'Vector Store Retriever',
name: 'vectorStoreRetriever',
type: 'BaseRetriever'
}
]
this.sessionId = fields?.sessionId
}

async init(nodeData: INodeData, input: string, options: ICommonObject): Promise<any> {
return prepareAgent(nodeData, options, { sessionId: this.sessionId, chatId: options.chatId, input })
}

async run(nodeData: INodeData, input: string, options: ICommonObject): Promise<string | ICommonObject> {
const memory = nodeData.inputs?.memory as FlowiseMemory
const moderations = nodeData.inputs?.inputModeration as Moderation[]

const isStreamable = options.socketIO && options.socketIOClientId

if (moderations && moderations.length > 0) {
try {
// Use the output of the moderation chain as input for the OpenAI Function Agent
input = await checkInputs(moderations, input)
} catch (e) {
await new Promise((resolve) => setTimeout(resolve, 500))
if (isStreamable)
streamResponse(options.socketIO && options.socketIOClientId, e.message, options.socketIO, options.socketIOClientId)
return formatResponse(e.message)
}
}

const executor = await prepareAgent(nodeData, options, { sessionId: this.sessionId, chatId: options.chatId, input })

const loggerHandler = new ConsoleCallbackHandler(options.logger)
const callbacks = await additionalCallbacks(nodeData, options)

let res: ChainValues = {}
let sourceDocuments: ICommonObject[] = []
let usedTools: IUsedTool[] = []

if (isStreamable) {
const handler = new CustomChainHandler(options.socketIO, options.socketIOClientId)
res = await executor.invoke({ input }, { callbacks: [loggerHandler, handler, ...callbacks] })
if (res.sourceDocuments) {
options.socketIO.to(options.socketIOClientId).emit('sourceDocuments', flatten(res.sourceDocuments))
sourceDocuments = res.sourceDocuments
}
if (res.usedTools) {
options.socketIO.to(options.socketIOClientId).emit('usedTools', res.usedTools)
usedTools = res.usedTools
}
} else {
res = await executor.invoke({ input }, { callbacks: [loggerHandler, ...callbacks] })
if (res.sourceDocuments) {
sourceDocuments = res.sourceDocuments
}
if (res.usedTools) {
usedTools = res.usedTools
}
}

let output = res?.output as string

// Claude 3 Opus tends to spit out <thinking>..</thinking> as well, discard that in final output
const regexPattern: RegExp = /<thinking>[\s\S]*?<\/thinking>/
const matches: RegExpMatchArray | null = output.match(regexPattern)
if (matches) {
for (const match of matches) {
output = output.replace(match, '')
}
}

await memory.addChatMessages(
[
{
text: input,
type: 'userMessage'
},
{
text: output,
type: 'apiMessage'
}
],
this.sessionId
)

let finalRes = res?.output

if (sourceDocuments.length || usedTools.length) {
const finalRes: ICommonObject = { text: output }
if (sourceDocuments.length) {
finalRes.sourceDocuments = flatten(sourceDocuments)
}
if (usedTools.length) {
finalRes.usedTools = usedTools
}
return finalRes
}

return finalRes
}
}

const formatDocs = (docs: Document[]) => {
return docs.map((doc, i) => `<doc id='${i}'>${doc.pageContent}</doc>`).join('\n')
}

const prepareAgent = async (
nodeData: INodeData,
options: ICommonObject,
flowObj: { sessionId?: string; chatId?: string; input?: string }
) => {
const model = nodeData.inputs?.model as BaseChatModel
const maxIterations = nodeData.inputs?.maxIterations as string
const memory = nodeData.inputs?.memory as FlowiseMemory
const systemMessage = nodeData.inputs?.systemMessage as string
let tools = nodeData.inputs?.tools
tools = flatten(tools)
const memoryKey = memory.memoryKey ? memory.memoryKey : 'chat_history'
const inputKey = memory.inputKey ? memory.inputKey : 'input'
const vectorStoreRetriever = nodeData.inputs?.vectorStoreRetriever as BaseRetriever

const prompt = ChatPromptTemplate.fromMessages([
['system', systemMessage ? systemMessage : `You are a helpful AI assistant.`],
new MessagesPlaceholder(memoryKey),
['human', `{${inputKey}}`],
new MessagesPlaceholder('agent_scratchpad')
])

if (llmSupportsVision(model)) {
const visionChatModel = model as IVisionChatModal
const messageContent = await addImagesToMessages(nodeData, options, model.multiModalOption)

if (messageContent?.length) {
visionChatModel.setVisionModel()

// Pop the `agent_scratchpad` MessagePlaceHolder
let messagePlaceholder = prompt.promptMessages.pop() as MessagesPlaceholder
if (prompt.promptMessages.at(-1) instanceof HumanMessagePromptTemplate) {
const lastMessage = prompt.promptMessages.pop() as HumanMessagePromptTemplate
const template = (lastMessage.prompt as PromptTemplate).template as string
const msg = HumanMessagePromptTemplate.fromTemplate([
...messageContent,
{
text: template
}
])
msg.inputVariables = lastMessage.inputVariables
prompt.promptMessages.push(msg)
}

// Add the `agent_scratchpad` MessagePlaceHolder back
prompt.promptMessages.push(messagePlaceholder)
} else {
visionChatModel.revertToOriginalModel()
}
}

if (model.bindTools === undefined) {
throw new Error(`This agent requires that the "bindTools()" method be implemented on the input model.`)
}

const modelWithTools = model.bindTools(tools)

const runnableAgent = RunnableSequence.from([
{
[inputKey]: (i: { input: string; steps: ToolsAgentStep[] }) => i.input,
agent_scratchpad: (i: { input: string; steps: ToolsAgentStep[] }) => formatToOpenAIToolMessages(i.steps),
[memoryKey]: async (_: { input: string; steps: ToolsAgentStep[] }) => {
const messages = (await memory.getChatMessages(flowObj?.sessionId, true)) as BaseMessage[]
return messages ?? []
},
context: async (i: { input: string; chatHistory?: string }) => {
const relevantDocs = await vectorStoreRetriever.invoke(i.input)
const formattedDocs = formatDocs(relevantDocs)
return formattedDocs
}
},
prompt,
modelWithTools,
new ToolCallingAgentOutputParser()
])

const executor = AgentExecutor.fromAgentAndTools({
agent: runnableAgent,
tools,
sessionId: flowObj?.sessionId,
chatId: flowObj?.chatId,
input: flowObj?.input,
verbose: process.env.DEBUG === 'true' ? true : false,
maxIterations: maxIterations ? parseFloat(maxIterations) : undefined
})

return executor
}

module.exports = { nodeClass: ConversationalRetrievalToolAgent_Agents }
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions packages/server/src/utils/index.ts
Original file line number Diff line number Diff line change
Expand Up @@ -1228,6 +1228,7 @@ export const isFlowValidForStream = (reactFlowNodes: IReactFlowNode[], endingNod
'conversationalRetrievalAgent',
'openAIToolAgent',
'toolAgent',
'conversationalRetrievalToolAgent',
'openAIToolAgentLlamaIndex'
]
isValidChainOrAgent = whitelistAgents.includes(endingNodeData.name)
Expand Down

0 comments on commit a857119

Please sign in to comment.