model type | training strategy | mAP(%) on VOC07 test | Iterations | model_name | backbone |
---|---|---|---|---|---|
conv5, a trous, strides=16 without ohem | 4 stages iteration as Faster RCNN | 75.77 | total steps 400k satge1 80k stage2 120k stage3 80k stage4 120k | model_A | resnet_101 |
conv5, a trous, strides=16 without ohem | only training total_loss | 76.35 | 110k | model_B | resnet_101 |
total_loss = loss_rpn_objectness + loss_rpn_bboxes + loss_rfcn_classes + loss_rfcn_bboxes
model_name | aeroplane | bicycle | bird | boat | bottle | bus | car | cat | chair | cow | diningtable | dog | horse | motorbike | person | pottedplant | sheep | sofa | train | tvmonitor |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
model_A | 0.8008 | 0.8004 | 0.7861 | 0.6579 | 0.4836 | 0.8646 | 0.8531 | 0.8774 | 0.6081 | 0.8517 | 0.6935 | 0.8884 | 0.8616 | 0.7821 | 0.7805 | 0.4693 | 0.7814 | 0.7742 | 0.7845 | 0.7516 |
model_B | 0.8020 | 0.7940 | 0.7877 | 0.6402 | 0.6571 | 0.8599 | 0.8578 | 0.8736 | 0.6183 | 0.8223 | 0.6492 | 0.8728 | 0.8447 | 0.8201 | 0.7888 | 0.4607 | 0.7703 | 0.7558 | 0.8354 | 0.7596 |
model_A
momentum: 0.9
stage1 total steps 80k, init learning rate 0.001, step 60k learning rate 0.0001
stage2 total steps 120k, init learning rate 0.001, step 80k learning rate 0.0001
stage3 total steps 80k, init learning rate 0.001, step 60k learning rate 0.0001
stage4 total steps 120k, init learning rate 0.001, step 80k learning rate 0.0001
model_B
momentum: 0.9
total steps 110k, init learning rate 0.001, step 80k learning rate 0.0001
model_name | download link | password |
---|---|---|
model_A | https://pan.baidu.com/s/1jIQThtW | cgwf |
model_B | https://pan.baidu.com/s/1i4QEVRZ | v9ua |
ohem (I have tried several methods, but have no effect. The map in all the methods have dropped.)focal loss (The focal loss also have no effect.)position sensitive score map + global roi pooling class.- code refactor
3 R-FCN: Object Detection via Region-based Fully Convolutional Networks
4 An Implementation of Faster RCNN with Study for Region Sampling