Skip to content

paulrich1234/tf_rfcnn_sogou2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RFCN_TensorFlow

Results
model type training strategy mAP(%) on VOC07 test Iterations model_name backbone
conv5, a trous, strides=16 without ohem 4 stages iteration as Faster RCNN 75.77 total steps 400k satge1 80k stage2 120k stage3 80k stage4 120k model_A resnet_101
conv5, a trous, strides=16 without ohem only training total_loss 76.35 110k model_B resnet_101

total_loss = loss_rpn_objectness + loss_rpn_bboxes + loss_rfcn_classes + loss_rfcn_bboxes

Result Details
model_name aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor
model_A 0.8008 0.8004 0.7861 0.6579 0.4836 0.8646 0.8531 0.8774 0.6081 0.8517 0.6935 0.8884 0.8616 0.7821 0.7805 0.4693 0.7814 0.7742 0.7845 0.7516
model_B 0.8020 0.7940 0.7877 0.6402 0.6571 0.8599 0.8578 0.8736 0.6183 0.8223 0.6492 0.8728 0.8447 0.8201 0.7888 0.4607 0.7703 0.7558 0.8354 0.7596
Training Details

model_A

  momentum: 0.9
  stage1 total steps 80k, init learning rate 0.001, step 60k learning rate 0.0001
  stage2 total steps 120k, init learning rate 0.001, step 80k learning rate 0.0001
  stage3 total steps 80k, init learning rate 0.001, step 60k learning rate 0.0001
  stage4 total steps 120k, init learning rate 0.001, step 80k learning rate 0.0001

model_B

  momentum: 0.9
  total steps 110k, init learning rate 0.001, step 80k learning rate 0.0001
Model Download Links
model_name download link password
model_A https://pan.baidu.com/s/1jIQThtW cgwf
model_B https://pan.baidu.com/s/1i4QEVRZ v9ua
Tasks
  • ohem (I have tried several methods, but have no effect. The map in all the methods have dropped.)
  • focal loss (The focal loss also have no effect.)
  • position sensitive score map + global roi pooling class.
  • code refactor
References:

1 tf-faster-rcnn

2 tensorflow-object-detection

3 R-FCN: Object Detection via Region-based Fully Convolutional Networks

4 An Implementation of Faster RCNN with Study for Region Sampling

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages