Sea level rise and extreme value analysis for Boston using IPCC AR6 Projections
Python implementation of the sea level and storm surge analysis in Lempert et al. (2012) and Oddo et al. (2017). Generates sea level rise scenarios consistent with projections Chapter 9 of Working Group 1 contribution to the the IPCC Sixth Assessment Report.
Authors of original R code:
Clone repository to your device:
git init
git clone https://github.com/pcoddo/boston-tides.git
Create Anaconda environment using environment.yml
file:
conda env create -f environment.yml
conda activate tides
The following Jupyter Notebooks explain how to run the analysis:
-
ar6_fit_distribution.ipynb
Fits a lognormal distribution to the IPCC AR6 empirical sea level projections for Boston in the year 2100. -
boston_slr.ipynb
Uses rejection sampling approach to generate uncertain sea level rise scenarios consistent with the IPCC expert assessment. -
boston_gev.ipynb
Performs a generalized extreme value (GEV) analysis for the Boston tide gauge using block maxima and Markov chain Monte Carlo. Based on pyextremes package.
Python version 3.7+
Packages:
- ipython
- matplotlib
- scipy
- ipykernel
- scikit-learn
- statsmodels
- ipywidgets
- openpyxl
- netcdf4
- seaborn
- fitter
- easydev
- pyextremes
-
Lempert, R., Sriver, R. L., & Keller, K. (2012). Characterizing Uncertain Sea Level Rise Projections to Support Investment Decisions (No. CEC-500-2012-056). California Energy Commission Sacramento, CA, USA. Retrieved from http://ced.berkeley.edu/faculty/ratt/readings/ALL_THE_CLIMATE_PAPERS_2012/PoLA_revision_feb_28_2012.pdf
-
Oddo, P. C., Lee, B. S., Garner, G. G., Srikrishnan, V., Reed, P. M., Forest, C. E., & Keller, K. (2017). Deep Uncertainties in Sea-Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management. Risk Analysis. https://doi.org/10.1111/risa.12888
-
Talke, S. A., Kemp, A. C., & Woodruff, J. (2018). Relative Sea Level, Tides, and Extreme Water Levels in Boston Harbor From 1825 to 2018. Journal of Geophysical Research: Oceans, 123(6), 3895–3914. https://doi.org/https://doi.org/10.1029/2017JC013645
-
Fox-Kemper, B., H. T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S. S. Drijfhout, T. L. Edwards, N. R. Golledge, M. Hemer, R. E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I. S. Nurhati, L. Ruiz, J-B. Sallée, A. B. A. Slangen, Y. Yu, 2021, Ocean, Cryosphere and Sea Level Change. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In press.
-
Garner, G. G., R. E. Kopp, T. Hermans, A. B. A. Slangen, G. Koubbe, M. Turilli, S. Jha, T. L. Edwards, A. Levermann, S. Nowikci, M. D. Palmer, C. Smith, in prep. Framework for Assessing Changes To Sea-level (FACTS). Geoscientific Model Development.
-
Garner, G. G., T. Hermans, R. E. Kopp, A. B. A. Slangen, T. L. Edwards, A. Levermann, S. Nowikci, M. D. Palmer, C. Smith, B. Fox-Kemper, H. T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S. S. Drijfhout, T. L. Edwards, N. R. Golledge, M. Hemer, R. E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I. S. Nurhati, L. Ruiz, J-B. Sallée, Y. Yu, L. Hua, T. Palmer, B. Pearson, 2021. IPCC AR6 Sea-Level Rise Projections. Version 20210809. PO.DAAC, CA, USA. Dataset accessed [2021-10-26] at https://podaac.jpl.nasa.gov/announcements/2021-08-09-Sea-level-projections-from-the-IPCC-6th-Assessment-Report.
We thank the projection authors for developing and making the sea-level rise projections available, multiple funding agencies for supporting the development of the projections, and the NASA Sea-Level Change Team for developing and hosting the IPCC AR6 Sea-Level Projection Tool. Special thanks to Gregory Garner for providing subset of full projections for the Boston Tide gauge.
Contact: Perry Oddo