Skip to content

This is the PyTorch implementation of VGG network trained on CIFAR10 dataset

License

Notifications You must be signed in to change notification settings

peiyangL/pytorch-vgg-cifar10

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pytorch-vgg-cifar10

This is the PyTorch implementation of VGG network trained on CIFAR10 dataset

Requirements.

[PyTorch] (https://github.com/pytorch/pytorch)

[torchvision] (https://github.com/pytorch/vision)

Update.

Adding support for CPU. Add --cpu can make the training or evaluation in cpu mode.

Download the model

The trained VGG model. 92.4% Accuracy VGG

Evaluation

# CUDA
wget http://www.cs.unc.edu/~cyfu/cifar10/model_best.pth.tar
python main.py --resume=./model_best.pth.tar -e
# or use CPU version
wget http://www.cs.unc.edu/~cyfu/cifar10/model_best_cpu.pth.tar
python main.py --resume=./model_best_cpu.pth.tar -e --cpu

Train with script! (16-bit precision)

./run.sh 

Using the run.sh script to generate the training log and models of different versions of VGG in 16-bit or 32-bit precision. Then use the ipython notebook plot.ipynb to view the results.

alt text

About

This is the PyTorch implementation of VGG network trained on CIFAR10 dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 86.7%
  • Python 12.8%
  • Shell 0.5%