Skip to content

pengts/VW-LMM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-modal Auto-regressive Modeling via Visual Words

[arXiv] [BibTeX]

This is the official repository for the multi-modal large language models: VW-LMM


Introduction

We propose VW-LMM, a large multi-modal model (LMM) that successfully performs multi-modal auto-regressive modeling with a unified objective for the first time. Specifically, we propose the concept of visual words, which maps the visual features to probability distributions over LLM's vocabulary, providing supervision information for visual modelling. We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information. Experimental results and ablation studies on 5 VQA tasks and 4 benchmark toolkits validate the powerful performance of our proposed approach. For more technical details, please refer to our paper.


In order to verify whether the visual words learnt by VW-LMM can realistically reflect the image information, we take VW-LMM-Vicuna-7B as an example to explore. For each patch in the image, we select the token with the highest probability in its corresponding visual words, and compare the region of interest in the image with its visualisation result, visualization is as follows (Best viewed zoomed-in):


Model Zoo

Version Size Support pseudo image features Checkpoint
VW-LMM-Vicuna 7B False VW-LMM-Vicuna-7b
VW-LMM-Mistral 7B False VW-LMM-Mistral-7b
VW-LMM-Vicuna-pif 7B True VW-LMM-Vicuna-pif-7b

VW-LMM, by constructing visual words to introduce visual supervisory information, achieves the best performance among models of the same scale of 7B, and obtains vision-language understanding capability competitive to or even surpassing that of 13B or even larger scale models.

Methods LLM Res. VQA^v2 GQA VisWiz SQA^I VQA^T POPE MMB MMB^CN MM-Vet
*Language Modeling Method*
IDEFICS-80B LLaMA-65B 224 60.0 45.2 36.0 -- 30.9 -- 54.5 38.1 --
InstructBLIP Vicuna-13B 224 -- 49.5 33.4 63.1 50.7 78.9 -- -- 25.6
BLIP-2 Vicuna-13B 224 41.0 41.0 19.6 61.0 42.5 85.3 -- -- 22.4
LLaVA-v1.5 Vicuna-13B 336 80.0 63.3 53.6 71.6 61.3 85.9 67.7 63.6 35.4
InstructBLIP Vicuna-7B 224 -- 49.2 34.5 60.5 50.1 -- 36 23.7 26.2
IDEFICS-9B LLaMA-7B 224 50.9 38.4 35.5 -- 25.9 -- 48.2 25.2 --
Qwen-VL Qwen-7B 448 78.8 59.3 35.2 67.1 63.8 -- 38.2 7.4 --
Qwen-VL-Chat Qwen-7B 448 78.2 57.5 38.9 68.2 61.5 -- 60.6 56.7 --
LLaVA-v1.5 Vicuna-7B 336 78.5 62.0 50.0 66.8 58.2 85.9 64.3 58.3 30.5
MoE-LLaVA-2.7B×4-Top2 Phi-2-2.7B 336 77.6 61.4 43.9 68.5 51.4 86.3 65.2 -- 34.3
*Multi-modal Modeling Method*
Emu2-Chat LLaMA-33B 448 84.9 65.1 54.9 65.5 66.6 -- -- -- 48.5
Emu-I LLaMA-13B 224 62.0 46.0 38.3 -- -- -- -- -- 36.3
MM-Interleaved-SFT Vicuna-13B 224 80.2 60.5 54.9 -- 61.0 -- -- -- --
Unified-IO 2 UIO-2-6.8B 384 79.4 -- -- 86.2 -- 87.7 71.5 -- --
DreamLLM Vicuna-7B 224 56.6 -- 38.1 -- 34.9 -- -- -- --
VL-GPT-I LLaMA-7B 224 67.2 51.5 38.9 -- -- -- -- -- --
LaVIT-v2 LLaMA2-7B 224 68.3 47.9 41.0 -- -- -- -- -- --
VW-LMM Vicuna-7B 336 78.9 62.7 48.3 68.1 57.6 85.9 65.9 59.8 31.3
VW-LMM Mistral-7B 336 80.8 65.4 58.5 75.9 63.1 87.0 80.6 79.0 44.0

Setup

Requirements

git clone https://github.com/pengts/VW-LMM.git
cd VW-LMM
pip install -r requirements.txt

Multi-modal Inference

Model Configurations

  • VW-LMM-Vicuna
model_path="VW-LMM-Vicuna"
conv_mode="vicuna_v1"
model_base="llama"
device = "cuda"
  • VW-LMM-Mistral
model_path="VW-LMM-Mistral"
conv_mode="mistral"
model_base="mistral"
device = "cuda"

VW-LMM-Vicuna-pif

model_path="VW-LMM-Vicuna-pif"
conv_mode="vicuna_v1"
model_base="llama"
device = "cuda"

Model Initialization

disable_torch_init()
model_path = os.path.expanduser(model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_name, model_base,device=device)

Input Processing

question="Write an exhaustive depiction of the given image."
image_path="./example.jpg"
qs = question
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

image = Image.open(image_path).convert('RGB')
image_tensor = process_images([image], image_processor, model.config)[0].unsqueeze(0).to(device)
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)

Inference

with torch.inference_mode():
    output_ids = model.generate(
        input_ids,
        images=image_tensor.to(dtype=torch.float16, device=device, non_blocking=True),
        do_sample= False,
        temperature=0,
        top_p=None,
        num_beams=1,
        max_new_tokens=128,
        use_cache=True)

input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
    print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
print(outputs)

Acknowledgement

We are grateful for the following awesome projects when implementing VW-LMM:

  • LLaVA: Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.
  • LLaMA: Open and Efficient Foundation Language Models
  • Vicuna: Open-source LLM with amazing language capabilities!
  • Mistral: A 7B transformer model, fast-deployed and easily customisable. Small, yet very powerful for a variety of use cases.

Citation

Consider giving this repository a star and cite VW-LMM in your publications if it helps your research.

@misc{peng2024multimodal,
      title={Multi-modal Auto-regressive Modeling via Visual Words}, 
      author={Tianshuo Peng and Zuchao Li and Lefei Zhang and Hai Zhao and Ping Wang and Bo Du},
      year={2024},
      eprint={2403.07720},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages