Skip to content

petermr/docanalysis

Repository files navigation

For updated tutorial, please check the Wiki page.

docanalysis

docanalysis is a Command Line Tool that ingests corpora (CProjects) and carries out text-analysis of documents, including

  • sectioning
  • NLP/text-mining
  • dictionary generation

Besides the bespoke code, it uses NLTK and other Python tools for many operations, and spaCy or scispaCy for extraction and annotation of entities. Outputs summary data and word-dictionaries.

Set up venv

We recommend you create a virtual environment (venv) before installing docanalysis and that you activate the venv before each time you run docanalysis.

Windows

Creating a venv

>> mkdir docanalysis_demo
>> cd docanalysis_demo
>> python -m venv venv

Activating venv

>> venv\Scripts\activate.bat

MacOS

Creating a venv

>> mkdir docanalysis_demo
>> cd docanalysis_demo
>> python3 -m venv venv

Activating venv

>> source venv/bin/activate

Refer the official documentation for more help.

Install docanalysis

You can download docanalysis from PYPI.

  pip install docanalysis

If you are on a Mac

pip3 install docanalysis

Download python from: https://www.python.org/downloads/ and select the option Add Python to Path while installing. Make sure pip is installed along with python. Check out https://pip.pypa.io/en/stable/installation/ if you have difficulties installing pip.

Run docanalysis

docanalysis --help should list the flags we support and their use.

usage: docanalysis.py [-h] [--run_pygetpapers] [--make_section] [-q QUERY] [-k HITS] [--project_name PROJECT_NAME] [-d DICTIONARY] [-o OUTPUT]
                      [--make_ami_dict MAKE_AMI_DICT] [--search_section [SEARCH_SECTION [SEARCH_SECTION ...]]] [--entities [ENTITIES [ENTITIES ...]]]
                      [--spacy_model SPACY_MODEL] [--html HTML] [--synonyms SYNONYMS] [--make_json MAKE_JSON] [--search_html] [--extract_abb EXTRACT_ABB]
                      [-l LOGLEVEL] [-f LOGFILE]

Welcome to docanalysis version 0.1.3. -h or --help for help

optional arguments:
  -h, --help            show this help message and exit
  --run_pygetpapers     [Command] downloads papers from EuropePMC via pygetpapers
  --make_section        [Command] makes sections; requires a fulltext.xml in CTree directories
  -q QUERY, --query QUERY
                        [pygetpapers] query string
  -k HITS, --hits HITS  [pygetpapers] number of papers to download
  --project_name PROJECT_NAME
                        CProject directory name
  -d DICTIONARY, --dictionary DICTIONARY
                        [file name/url] existing ami dictionary to annotate sentences or support supervised entity extraction
  -o OUTPUT, --output OUTPUT
                        outputs csv with sentences/terms
  --make_ami_dict MAKE_AMI_DICT
                        [Command] title for ami-dict. Makes ami-dict of all extracted entities; works only with spacy
  --search_section [SEARCH_SECTION [SEARCH_SECTION ...]]
                        [NER/dictionary search] section(s) to annotate. Choose from: ALL, ACK, AFF, AUT, CON, DIS, ETH, FIG, INT, KEY, MET, RES, TAB, TIL. Defaults to
                        ALL
  --entities [ENTITIES [ENTITIES ...]]
                        [NER] entities to extract. Default (ALL). Common entities SpaCy: GPE, LANGUAGE, ORG, PERSON (for additional ones check: ); SciSpaCy: CHEMICAL,
                        DISEASE
  --spacy_model SPACY_MODEL
                        [NER] optional. Choose between spacy or scispacy models. Defaults to spacy
  --html HTML           outputs html with sentences/terms
  --synonyms SYNONYMS   annotate the corpus/sections with synonyms from ami-dict
  --make_json MAKE_JSON
                        outputs json with sentences/terms
  --search_html         searches html documents (mainly IPCC)
  --extract_abb EXTRACT_ABB
                        [Command] title for abb-ami-dict. Extracts abbreviations and expansions; makes ami-dict of all extracted entities
  -l LOGLEVEL, --loglevel LOGLEVEL
                        provide logging level. Example --log warning <<info,warning,debug,error,critical>>, default='info'
  -f LOGFILE, --logfile LOGFILE
                        saves log to specified file in output directory as well as printing to terminal

Download papers from EPMC via pygetpapers

COMMAND

docanalysis --run_pygetpapers -q "terpene" -k 10 --project_name terpene_10

LOGS

INFO: making project/searching terpene for 10 hits into C:\Users\shweata\docanalysis\terpene_10
INFO: Total Hits are 13935
1it [00:00, 936.44it/s]
INFO: Saving XML files to C:\Users\shweata\docanalysis\terpene_10\*\fulltext.xml
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:30<00:00,  3.10s/it]

CPROJ

C:\USERS\SHWEATA\DOCANALYSIS\TERPENE_10
│   eupmc_results.json
│
├───PMC8625850
│       eupmc_result.json
│       fulltext.xml
│
├───PMC8727598
│       eupmc_result.json
│       fulltext.xml
│
├───PMC8747377
│       eupmc_result.json
│       fulltext.xml
│
├───PMC8771452
│       eupmc_result.json
│       fulltext.xml
│
├───PMC8775117
│       eupmc_result.json
│       fulltext.xml
│
├───PMC8801761
│       eupmc_result.json
│       fulltext.xml
│
├───PMC8831285
│       eupmc_result.json
│       fulltext.xml
│
├───PMC8839294
│       eupmc_result.json
│       fulltext.xml
│
├───PMC8840323
│       eupmc_result.json
│       fulltext.xml
│
└───PMC8879232
        eupmc_result.json
        fulltext.xml

Section the papers

COMMAND

docanalysis --project_name terpene_10 --make_section

LOGS

WARNING: Making sections in /content/terpene_10/PMC9095633/fulltext.xml
INFO: dict_keys: dict_keys(['abstract', 'acknowledge', 'affiliation', 'author', 'conclusion', 'discussion', 'ethics', 'fig_caption', 'front', 'introduction', 'jrnl_title', 'keyword', 'method', 'octree', 'pdfimage', 'pub_date', 'publisher', 'reference', 'results_discuss', 'search_results', 'sections', 'svg', 'table', 'title'])
WARNING: loading templates.json
INFO: wrote XML sections for /content/terpene_10/PMC9095633/fulltext.xml /content/terpene_10/PMC9095633/sections
WARNING: Making sections in /content/terpene_10/PMC9120863/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9120863/fulltext.xml /content/terpene_10/PMC9120863/sections
WARNING: Making sections in /content/terpene_10/PMC8982386/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC8982386/fulltext.xml /content/terpene_10/PMC8982386/sections
WARNING: Making sections in /content/terpene_10/PMC9069239/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9069239/fulltext.xml /content/terpene_10/PMC9069239/sections
WARNING: Making sections in /content/terpene_10/PMC9165828/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9165828/fulltext.xml /content/terpene_10/PMC9165828/sections
WARNING: Making sections in /content/terpene_10/PMC9119530/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9119530/fulltext.xml /content/terpene_10/PMC9119530/sections
WARNING: Making sections in /content/terpene_10/PMC8982077/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC8982077/fulltext.xml /content/terpene_10/PMC8982077/sections
WARNING: Making sections in /content/terpene_10/PMC9067962/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9067962/fulltext.xml /content/terpene_10/PMC9067962/sections
WARNING: Making sections in /content/terpene_10/PMC9154778/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9154778/fulltext.xml /content/terpene_10/PMC9154778/sections
WARNING: Making sections in /content/terpene_10/PMC9164016/fulltext.xml
INFO: wrote XML sections for /content/terpene_10/PMC9164016/fulltext.xml /content/terpene_10/PMC9164016/sections
 47% 1056/2258 [00:01<00:01, 1003.31it/s]ERROR: cannot parse /content/terpene_10/PMC9165828/sections/1_front/1_article-meta/26_custom-meta-group/0_custom-meta/1_meta-value/0_xref.xml
 67% 1516/2258 [00:01<00:00, 1047.68it/s]ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/7_xref.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/14_email.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/3_xref.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/6_xref.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/9_email.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/10_email.xml
ERROR: cannot parse /content/terpene_10/PMC9119530/sections/1_front/1_article-meta/24_custom-meta-group/0_custom-meta/1_meta-value/4_xref.xml
...
100% 2258/2258 [00:02<00:00, 949.43it/s] 

CTREE

├───PMC8625850
│   └───sections
│       ├───0_processing-meta
│       ├───1_front
│       │   ├───0_journal-meta
│       │   └───1_article-meta
│       ├───2_body
│       │   ├───0_1._introduction
│       │   ├───1_2._materials_and_methods
│       │   │   ├───1_2.1._materials
│       │   │   ├───2_2.2._bacterial_strains
│       │   │   ├───3_2.3._preparation_and_character
│       │   │   ├───4_2.4._evaluation_of_the_effect_
│       │   │   ├───5_2.5._time-kill_studies
│       │   │   ├───6_2.6._propidium_iodide_uptake-e
│       │   │   └───7_2.7._hemolysis_test_from_human
│       │   ├───2_3._results
│       │   │   ├───1_3.1._encapsulation_of_terpene_
│       │   │   ├───2_3.2._both_terpene_alcohol-load
│       │   │   ├───3_3.3._farnesol_and_geraniol-loa
│       │   │   └───4_3.4._farnesol_and_geraniol-loa
│       │   ├───3_4._discussion
│       │   ├───4_5._conclusions
│       │   └───5_6._patents
│       ├───3_back
│       │   ├───0_ack
│       │   ├───1_fn-group
│       │   │   └───0_fn
│       │   ├───2_app-group
│       │   │   └───0_app
│       │   │       └───2_supplementary-material
│       │   │           └───0_media
│       │   └───9_ref-list
│       └───4_floats-group
│           ├───4_table-wrap
│           ├───5_table-wrap
│           ├───6_table-wrap
│           │   └───4_table-wrap-foot
│           │       └───0_fn
│           ├───7_table-wrap
│           └───8_table-wrap
...
Search sections using dictionary

COMMAND

docanalysis --project_name terpene_10 --output entities.csv --make_ami_dict entities.xml

LOGS

INFO: Found 7134 sentences in the section(s).
INFO: getting terms from /content/activity.xml
100% 7134/7134 [00:02<00:00, 3172.14it/s]
/usr/local/lib/python3.7/dist-packages/docanalysis/entity_extraction.py:352: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True.
  "[", "").str.replace("]", "")
INFO: wrote output to /content/terpene_10/activity.csv

Extract entities

We use spacy to extract Named Entites. Here's the list of Entities it supports:CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW,LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART INPUT

docanalysis --project_name terpene_10 --make_section --spacy_model spacy --entities ORG --output org.csv

LOGS

INFO: Found 7134 sentences in the section(s).
INFO: Loading spacy
100% 7134/7134 [01:08<00:00, 104.16it/s]
/usr/local/lib/python3.7/dist-packages/docanalysis/entity_extraction.py:352: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True.
  "[", "").str.replace("]", "")
INFO: wrote output to /content/terpene_10/org.csv
Extract information from specific section(s)

You can choose to extract entities from specific sections

COMMAND

docanalysis --project_name terpene_10 --make_section --spacy_model spacy --search_section AUT, AFF --entities ORG --output org_aut_aff.csv

LOG

INFO: Found 28 sentences in the section(s).
INFO: Loading spacy
100% 28/28 [00:00<00:00, 106.66it/s]
/usr/local/lib/python3.7/dist-packages/docanalysis/entity_extraction.py:352: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True.
  "[", "").str.replace("]", "")
INFO: wrote output to /content/terpene_10/org_aut_aff.csv

Create dictionary of extracted entities

COMMAND

docanalysis --project_name terpene_10 --make_section --spacy_model spacy --search_section AUT, AFF --entities ORG --output org_aut_aff.csvv --make_ami_dict org

LOG

INFO: Found 28 sentences in the section(s).
INFO: Loading spacy
100% 28/28 [00:00<00:00, 96.56it/s] 
/usr/local/lib/python3.7/dist-packages/docanalysis/entity_extraction.py:352: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True.
  "[", "").str.replace("]", "")
INFO: wrote output to /content/terpene_10/org_aut_aff.csvv
INFO: Wrote all the entities extracted to ami dict

Snippet of the dictionary

<?xml version="1.0"?>
- dictionary title="/content/terpene_10/org.xml">
<entry count="2" term="Department of Biochemistry"/>
<entry count="2" term="Chinese Academy of Agricultural Sciences"/>
<entry count="2" term="Tianjin University"/>
<entry count="2" term="Desert Research Center"/>
<entry count="2" term="Chinese Academy of Sciences"/>
<entry count="2" term="University of Colorado Boulder"/>
<entry count="2" term="Department of Neurology"/>
<entry count="1" term="Max Planck Institute for Chemical Ecology"/>
<entry count="1" term="College of Forest Resources and Environmental Science"/>
<entry count="1" term="Michigan Technological University"/>

Extract Abbreviations

docanalysis --project_name corpus\ethics_10 --output dict_search_5.csv  --make_json dict_search_5.json --make_ami_dict entities --extract_abb ethics_abb

--extract_abb extracts all abbreviations and make an ami-dictionary of abbreviations and its expansion.

EXAMPLE DICTIONARY:

<dictionary title="ethics_abb">
  <entry name="ASD" term="Atrial septal defect"/>
  <entry name="SPSS" term="Statistical Package for Social Sciences"/>
  <entry name="ACGME" term="Accreditation Council of Graduate Medical Education"/>
  <entry name="ABP" term="American Board of Paediatrics"/>
  <entry name="TBL" term="Team Based Learning"/>
  <entry name="TBL" term="Team-Based Learning"/>
  <entry name="UNTH" term="University of Nigeria Teaching Hospital"/>
  <entry name="PAH" term="pulmonary hypertension"/>
  <entry name="HREC" term="Human Sciences Research Council, Research Ethics Committee"/>
  <entry name="HREC" term="Human Sciences Research Council, Research Ethics Committee"/>
  <entry name="CDC" term="Center for Disease Control and Prevention"/>
  <entry name="ASD" term="Atrial septal defect"/>
  <entry name="PAH" term="pulmonary arterial hypertension"/>
  <entry name="CVDs" term="cardiovascular diseases"/>
  <entry name="BNs" term="Bayesian networks"/>
  <entry name="GI" term="gastrointestinal cancer"/>
  <entry name="ART" term="antiretroviral therapy"/>
  <entry name="HIV" term="human immunodeficiency virus"/>
  <entry name="GATE" term="Global Cooperation on Assistive Technology"/>
</dictionary>

Search HTML

If you working with HTML files (IPCC Reports, for example) and not XMLs in CProjects, you can use --search_html flag.

docanalysis --project_name corpus\ipcc_sectioned  --extract_abb ethics_abb --search_html

Make sure that your html sections is in sections folder. Here's an example structure:

C:.
|   dict_search_2.csv
|   dict_search_2.json
|
\---chap4
    |   chapter_4
    |
    \---sections
            4.1.html
            4.2.1.html
            4.2.2.html
            4.2.3.html
            4.2.4.html
            4.2.5.html
            4.2.7.html
            4.2.html
            4.3.1.html
            4.3.2.html
            4.3.html
            4.4.1.html
            4.4.2.html
            4.4.html
            4.5.html
            executive_summary.html
            frequently_asked_questions.html
            table_of_contents.html

If you haven't sectioned your html, please use py4ami to section it.

What is a dictionary

Dictionary, in ami's terminology, a set of terms/phrases in XML format. Dictionaries related to ethics and acknowledgments are available in Ethics Dictionary folder

If you'd like to create a custom dictionary, you can find the steps, here

### Python tools used
- [`pygetpapers`](https://github.com/petermr/pygetpapers) - scrape open repositories to download papers of interest
- [nltk](https://www.nltk.org/) - splits sentences
- [spaCy](https://spacy.io/) and  [SciSpaCy](https://allenai.github.io/scispacy/)
 - recognize Named-Entities and label them
     - Here's the list of NER labels [SpaCy's English model](https://spacy.io/models/en) provides:  
     `CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART`


### Credits: 
-  [Ayush Garg](https://github.com/ayush4921)
-  [Shweata N. Hegde](https://github.com/ShweataNHegde/)
-  [Daniel Mietchen](https://github.com/Daniel-Mietchen)
-  [Peter Murray-Rust](https://github.com/petermr)


About

Semantic analysis of text documents including sentence and paragraph splitting

Resources

License

Stars

Watchers

Forks

Packages

No packages published