Skip to content

peterzhang2029/adaptivesoftmax_torch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Word-level language modeling RNN Using adaptive softmax

By default you need download the preprocessed wikitext-2 dataset wikitext-2.zip and put the zip file under data folder.

Of course you can use your own text dataset as well.

cd data 
unzip wikitext-2.zip
cd ..
python main.py --epochs 6   # Train a LSTM on Wikitext-2 with CUDA
python main.py --epochs 6 --model LSTM_adaptive    # Train a LSTM with adaptive softmax on Wikitext-2 with CUDA

You may add --cuda option to accelerate the training process if you have a gpu.

Result:

For regular softmax:

Train:

epoch epoch time valid loss valid ppl
end of epoch 1 time: 48.67s valid loss 5.52 valid ppl 250.68
end of epoch 2 time: 48.61s valid loss 5.28 valid ppl 196.87
end of epoch 3 time: 48.66s valid loss 5.17 valid ppl 175.51
end of epoch 4 time: 48.90s valid loss 5.09 valid ppl 162.27
end of epoch 5 time: 49.76s valid loss 5.08 valid ppl 161.23
end of epoch 6 time: 49.63s valid loss 5.01 valid ppl 149.77

Test:

test loss 4.94s
test ppl 139.35

all Time_cost: 296.55s

For adaptive softmax:

Train:

epoch epoch time valid loss valid ppl
end of epoch 1 time: 28.68s valid loss 5.56 valid ppl 259.24
end of epoch 2 time: 30.67s valid loss 5.34 valid ppl 208.12
end of epoch 3 time: 30.43s valid loss 5.21 valid ppl 183.21
end of epoch 4 time: 30.32s valid loss 5.10 valid ppl 164.43
end of epoch 5 time: 28.89s valid loss 5.09 valid ppl 162.26
end of epoch 6 time: 29.30s valid loss 5.04 valid ppl 154.52

Test:

test loss 4.97s
test ppl 143.32

all Time_cost: 179.856s

Loss comparison

avatar

PPL comparison

avatar

How to get wikitext-2.zip

由于文件太大,所以放到网盘中了

欢迎关注公众号:机器学习爱好者

或者扫码:

avatar

关注后回复 adaptive 就可以获取下载地址啦

About

adaptive softmax implemented by torch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages